赞
踩
Diamond是一款快速的序列比对工具,其使用方法如下:
可从官方网站(https://github.com/bbuchfink/diamond/releases)下载安装包,并安装到本地电脑中。当然还有docker,conda以及编译安装方式,一般用不上,但注意新版对gcc的要求高,出现gcc错误时可选择下载低版本的diamond或者升级gcc到指定版本以上。
- #下载diamond程序文件
- wget http://github.com/bbuchfink/diamond/releases/download/v2.1.8/diamond-linux64.tar.gz
- ###其他版本直接访问http://github.com/bbuchfink/diamond/releases/download/查看
-
- #解压会出来一个diamond的文件
- tar -xzvf diamond-linux64.tar.gz
- #移到系统环境目录、或将当前目录加入系统环境目录,或者直接使用路径加diamond命令运行
- diamond blastx
-
- ./diamond blastx
-
- /opt/diamond blastx
首先需要准备用于比对的序列数据集,比如fasta格式的序列文件。
- #下载nr数据库,或这自己需要的数据库
- wget ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
- gunzip nr.gz
- #使用diamond命令创建dimond格式数据库
- diamond makedb --in nr --db nr
-
在终端中输入以下命令,即可启动Diamond程序并运行比对任务:
diamond blastx -d [参考序列文件] -q [待比对序列文件] -o [输出文件名]
- #下载nr数据库,或这自己需要的数据库
- wget ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
- gunzip nr.gz
- #使用diamond命令创建dimond格式数据库
- diamond makedb --in nr --db nr
-
- #命令使用
- diamond blastx --db nr -q reads.fna -o dna_matches_fmt6.txt
- diamond blastp --db nr -q reads.faa -o protein_matches_fmt6.txt
其中,blastx表示使用蛋白质序列比对算法,-d和-q分别指定参考序列文件和待比对序列文件,-o指定输出文件名。
diamond尽管速度快,但对于大文件进行比对时,大于1G以上的文件对于40核的单个节点可能仍然需要几天的时间,如果有较多的节点时,可以使用多节点的并行计算,这一点太给力了。
准备工作(重要,否则不成功):
1、将diamond程序目录在各节点间共享
2、样品序列目录在各节点间共享
3、所有节点使用相同的临时目录在各节点间共享。
- # Diamond distributed-memory parallel processing
- #Diamond supports the parallel processing of large alignments on HPC clusters and #supercomputers, spanning numerous compute nodes. Work distribution is orchestrated by #Diamond via a shared file system typically available on such clusters, using lightweight #file-based stacks and POSIX functionality.
-
- #Usage
- #To run Diamond in parallel, two steps need to be performed. First, during a short #initialization run using a single process, the query and database are scanned and chunks #of work are written to the file-based stacks on the parallel file system. Second, the #actual parallel run is performed, where multiple DIAMOND processes on different compute #nodes work on chunks of the query and the reference database to perform alignments and #joins.
-
- #Initialization 先进行任务初始化,这个只需要在第一个节点上初始化就行了。其他节点直接启动后面一步的并行计算命令就行
- #The initialization of a parallel run should be done (e.g. interactively on a login node) #using the parameters --multiprocessing --mp-init as follows:
-
- diamond blastp --db DATABASE.dmnd --query QUERY.fasta --multiprocessing --mp-init --tmpdir $TMPDIR --parallel-tmpdir $PTMPDIR
-
- #Here $TMPDIR refers to a local temporary directory, whereas $PTMPDIR refers to a #directory in the parallel file system where the file-based stacks containing the work #packages will be created. Note that the size of the chunking and thereby the number of #work packages is controlled via the --block-size parameter.
-
- #Parallel run 开始真实的并行计算,可以在所有计算节点启动
- #The actual parallel run should be done using the parameter --multiprocessing as follows:
-
- diamond blastp --db DATABASE.dmnd --query QUERY.fasta -o OUTPUT_FILE --multiprocessing --tmpdir $TMPDIR --parallel-tmpdir $PTMPDIR
-
- #这里特意说明文件夹与任务初始化文件夹的一致性,主要是临时计算目录tmpdir
- #Note that $PTMPDIR must refer to the same location as used during the initialization, #and it must be accessible from any of the compute nodes involved. To launch the parallel #processes on many nodes, a batch system such as SLURM is typically used. For the output #not a single stream is used but rather multiple files are created, one for each query #chunk.
-
- #SLURM batch file example slurm超算集群脚本,这个不多说了吧,使用这个更方便一点,没有也不用担心,使用前面那两个命令即可。
- #The following script shows an example of how a massively parallel can be performed using #the SLURM batch system on a supercomputer.
-
- #!/bin/bash -l
- #SBATCH -D ./
- #SBATCH -J DIAMOND
- #SBATCH --mem=185000
- #SBATCH --nodes=520
- #SBATCH --ntasks-per-node=1
- #SBATCH --ntasks-per-core=2
- #SBATCH --cpus-per-task=80
- #SBATCH --mail-type=none
- #SBATCH --time=24:00:00
-
- module purge
- module load gcc impi
- export SLURM_HINT=multithread
-
-
- ###以下是超算的相关说明,重点关注前面配置即可。
- srun diamond FLAGS
- FLAGS refers to the aforementioned parallel flags for Diamond. Note that the actual configuration of the nodes varies between machines, and therefore, the parameters shown here are not of general applicability. It is recommended to start with few nodes on small problems, first.
-
- Abort and resume
- Parallel runs can be aborted and later resumed, and unfinished work packages from a previous run can be recovered and resubmitted in a subsequent run.
-
- Using the option --multiprocessing --mp-recover for the same value of --parallel-tmpdir will scan the working directory and configure a new parallel run including only the work packages that have not been completed in the previous run.
-
- Placing a file stop in the working directory causes DIAMOND processes to shut down in a controlled way after finishing the current work package. After removing the stop file, the multiprocessing run can be continued.
-
- Parameter optimization
- The granularity of the size of the work packages can be adjusted via the --block-size which at the same time affects the memory requirements at runtime. Parallel runs on more than 512 nodes of a supercomputer have been performed successfully.
比对结束后,可以查看输出文件中的比对结果。Diamond的输出文件包含每个待比对序列的匹配结果,包括匹配的参考序列名、匹配位置、匹配得分等信息。
结果字段表示与原生blast结果表示相同:
见: 生物信息学分析-blast序列比对及结果详细说明-CSDN博客
以上就是Diamond的基本使用方法,更详细的说明可以参考官方文档:https://github.com/bbuchfink/diamond/wiki。
- # downloading the tool,下载工具
- wget http://github.com/bbuchfink/diamond/releases/download/v2.1.8/diamond-linux64.tar.gz
- tar xzf diamond-linux64.tar.gz
- # creating a diamond-formatted database file 创建diamond数据库
- ./diamond makedb --in reference.fasta -d reference
- # running a search in blastp mode 使用blastp模式比对序列
- ./diamond blastp -d reference -q queries.fasta -o matches.tsv
- # running a search in blastx mode 使用blastx 模式比对序列
- ./diamond blastx -d reference -q reads.fasta -o matches.tsv
- # downloading and using a BLAST database
- update_blastdb.pl --decompress --blastdb_version 5 swissprot
- ./diamond prepdb -d swissprot
- ./diamond blastp -d swissprot -q queries.fasta -o matches.tsv
-
- Some important points to consider:
-
- Repeat masking is applied to the query and reference sequences by default. To disable it, use --masking 0. 默认情况下是允许重复结果,如果只输出最优结果就加上 --masking 0
- DIAMOND is optimized for large input files of >1 million proteins. Naturally the tool can be used for smaller files as well, but the algorithm will not reach its full efficiency.
- The program may use quite a lot of memory and also temporary disk space. Should the program fail due to running out of either one, you need to set a lower value for the block size parameter -b. DIAMOND是大文件效率更好,对于小文件建议添加 -b 的参数
- The sensitivity can be adjusted using the options --fast, --mid-sensitive, --sensitive, --more-sensitive, --very-sensitive and --ultra-sensitive. 比对敏感性,越往后其结果越接近原生blast结果,但速度也越慢,一般使用--more-sensitive比较适中,计算资源不够的就使用fast。
下面是diamond的较为详细的帮助说明:自己慢慢看吧,不过一般不用特意设置了。
- diamond --help
- diamond v2.0.11.149 (C) Max Planck Society for the Advancement of Science
- Documentation, support and updates available at http://www.diamondsearch.org
- Please cite: http://dx.doi.org/10.1038/s41592-021-01101-x Nature Methods (2021)
-
- Syntax: diamond COMMAND [OPTIONS]
-
- Commands:
- makedb Build DIAMOND database from a FASTA file #以fasta文件创建diamond格式数据库
- blastp Align amino acid query sequences against a protein reference database #功能与原生blastp功能一致
- blastx Align DNA query sequences against a protein reference database #功能与原生blastx一致
- view View DIAMOND alignment archive (DAA) formatted file
- help Produce help message
- version Display version information
- getseq Retrieve sequences from a DIAMOND database file
- dbinfo Print information about a DIAMOND database file
- test Run regression tests
- makeidx Make database index
-
- General options:
- --threads (-p) number of CPU threads #指定需要运行的线程数,可尽量大
- --db (-d) database file #diamond makedb产生的diamond可使用格式的数据库
- --out (-o) output file #比对结果输出命名
- --outfmt (-f) output format #outfmt,一般选6表格格式,与原生blast一致
- 0 = BLAST pairwise
- 5 = BLAST XML
- 6 = BLAST tabular
- 100 = DIAMOND alignment archive (DAA)
- 101 = SAM
-
- Value 6 may be followed by a space-separated list of these keywords:
-
- qseqid means Query Seq - id
- qlen means Query sequence length
- sseqid means Subject Seq - id
- sallseqid means All subject Seq - id(s), separated by a ';'
- slen means Subject sequence length
- qstart means Start of alignment in query
- qend means End of alignment in query
- sstart means Start of alignment in subject
- send means End of alignment in subject
- qseq means Aligned part of query sequence
- qseq_translated means Aligned part of query sequence (translated)
- full_qseq means Query sequence
- full_qseq_mate means Query sequence of the mate
- sseq means Aligned part of subject sequence
- full_sseq means Subject sequence
- evalue means Expect value
- bitscore means Bit score
- score means Raw score
- length means Alignment length
- pident means Percentage of identical matches
- nident means Number of identical matches
- mismatch means Number of mismatches
- positive means Number of positive - scoring matches
- gapopen means Number of gap openings
- gaps means Total number of gaps
- ppos means Percentage of positive - scoring matches
- qframe means Query frame
- btop means Blast traceback operations(BTOP)
- cigar means CIGAR string
- staxids means unique Subject Taxonomy ID(s), separated by a ';' (in numerical order)
- sscinames means unique Subject Scientific Name(s), separated by a ';'
- sskingdoms means unique Subject Super Kingdom(s), separated by a ';'
- skingdoms means unique Subject Kingdom(s), separated by a ';'
- sphylums means unique Subject Phylum(s), separated by a ';'
- stitle means Subject Title
- salltitles means All Subject Title(s), separated by a '<>'
- qcovhsp means Query Coverage Per HSP
- scovhsp means Subject Coverage Per HSP
- qtitle means Query title
- qqual means Query quality values for the aligned part of the query
- full_qqual means Query quality values
- qstrand means Query strand
-
- Default: qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore
- --verbose (-v) verbose console output
- --log enable debug log
- --quiet disable console output
- --header Write header lines to blast tabular format.
-
- Makedb options:
- --in input reference file in FASTA format
- --taxonmap protein accession to taxid mapping file
- --taxonnodes taxonomy nodes.dmp from NCBI
- --taxonnames taxonomy names.dmp from NCBI
-
- Aligner options:
- --query (-q) input query file
- --strand query strands to search (both/minus/plus)
- --un file for unaligned queries
- --al file or aligned queries
- --unfmt format of unaligned query file (fasta/fastq)
- --alfmt format of aligned query file (fasta/fastq)
- --unal report unaligned queries (0=no, 1=yes)
- --max-target-seqs (-k) maximum number of target sequences to report alignments for (default=25)
- --top report alignments within this percentage range of top alignment score (overrides --max-target-seqs)
- --max-hsps maximum number of HSPs per target sequence to report for each query (default=1)
- --range-culling restrict hit culling to overlapping query ranges
- --compress compression for output files (0=none, 1=gzip, zstd)
- --evalue (-e) maximum e-value to report alignments (default=0.001)
- --min-score minimum bit score to report alignments (overrides e-value setting)
- --id minimum identity% to report an alignment
- --query-cover minimum query cover% to report an alignment
- --subject-cover minimum subject cover% to report an alignment
- --fast enable fast mode
- --mid-sensitive enable mid-sensitive mode
- --sensitive enable sensitive mode)
- --more-sensitive enable more sensitive mode
- --very-sensitive enable very sensitive mode
- --ultra-sensitive enable ultra sensitive mode
- --iterate iterated search with increasing sensitivity
- --global-ranking (-g) number of targets for global ranking
- --block-size (-b) sequence block size in billions of letters (default=2.0)
- --index-chunks (-c) number of chunks for index processing (default=4)
- --tmpdir (-t) directory for temporary files
- --parallel-tmpdir directory for temporary files used by multiprocessing
- --gapopen gap open penalty
- --gapextend gap extension penalty
- --frameshift (-F) frame shift penalty (default=disabled)
- --long-reads short for --range-culling --top 10 -F 15
- --matrix score matrix for protein alignment (default=BLOSUM62)
- --custom-matrix file containing custom scoring matrix
- --comp-based-stats composition based statistics mode (0-4)
- --masking enable tantan masking of repeat regions (0/1=default)
- --query-gencode genetic code to use to translate query (see user manual)
- --salltitles include full subject titles in DAA file
- --sallseqid include all subject ids in DAA file
- --no-self-hits suppress reporting of identical self hits
- --taxonlist restrict search to list of taxon ids (comma-separated)
- --taxon-exclude exclude list of taxon ids (comma-separated)
- --seqidlist filter the database by list of accessions
- --skip-missing-seqids ignore accessions missing in the database
-
- Advanced options:
- --algo Seed search algorithm (0=double-indexed/1=query-indexed/ctg=contiguous-seed)
- --bin number of query bins for seed search
- --min-orf (-l) ignore translated sequences without an open reading frame of at least this length
- --freq-sd number of standard deviations for ignoring frequent seeds
- --id2 minimum number of identities for stage 1 hit
- --xdrop (-x) xdrop for ungapped alignment
- --gapped-filter-evalue E-value threshold for gapped filter (auto)
- --band band for dynamic programming computation
- --shapes (-s) number of seed shapes (default=all available)
- --shape-mask seed shapes
- --multiprocessing enable distributed-memory parallel processing
- --mp-init initialize multiprocessing run
- --mp-recover enable continuation of interrupted multiprocessing run
- --mp-query-chunk process only a single query chunk as specified
- --ext-chunk-size chunk size for adaptive ranking (default=auto)
- --no-ranking disable ranking heuristic
- --ext Extension mode (banded-fast/banded-slow/full)
- --culling-overlap minimum range overlap with higher scoring hit to delete a hit (default=50%)
- --taxon-k maximum number of targets to report per species
- --range-cover percentage of query range to be covered for range culling (default=50%)
- --dbsize effective database size (in letters)
- --no-auto-append disable auto appending of DAA and DMND file extensions
- --xml-blord-format Use gnl|BL_ORD_ID| style format in XML output
- --stop-match-score Set the match score of stop codons against each other.
- --tantan-minMaskProb minimum repeat probability for masking (default=0.9)
- --file-buffer-size file buffer size in bytes (default=67108864)
- --memory-limit (-M) Memory limit for extension stage in GB
- --no-unlink Do not unlink temporary files.
- --target-indexed Enable target-indexed mode
- --ignore-warnings Ignore warnings
-
- View options:
- --daa (-a) DIAMOND alignment archive (DAA) file
- --forwardonly only show alignments of forward strand
-
- Getseq options:
- --seq Sequence numbers to display.
-
- Online documentation at http://www.diamondsearch.org
新版本帮助更简洁,不在一个层次的命令不显示出来,以免混淆。
- diamond --help
- diamond v2.1.8.162 (C) Max Planck Society for the Advancement of Science, Benjamin Buchfink, University of Tuebingen
- Documentation, support and updates available at http://www.diamondsearch.org
- Please cite: http://dx.doi.org/10.1038/s41592-021-01101-x Nature Methods (2021)
-
- Syntax: diamond COMMAND [OPTIONS]
-
- Commands:
- makedb Build DIAMOND database from a FASTA file
- prepdb Prepare BLAST database for use with Diamond
- blastp Align amino acid query sequences against a protein reference database
- blastx Align DNA query sequences against a protein reference database
- cluster Cluster protein sequences
- linclust Cluster protein sequences in linear time
- realign Realign clustered sequences against their centroids
- recluster Recompute clustering to fix errors
- reassign Reassign clustered sequences to the closest centroid
- view View DIAMOND alignment archive (DAA) formatted file
- merge-daa Merge DAA files
- help Produce help message
- version Display version information
- getseq Retrieve sequences from a DIAMOND database file
- dbinfo Print information about a DIAMOND database file
- test Run regression tests
- makeidx Make database index
- greedy-vertex-cover Compute greedy vertex cover
-
- Possible [OPTIONS] for COMMAND can be seen with syntax: diamond COMMAND
-
- Online documentation at http://www.diamondsearch.org
要显示更具体的命令下的参数,直接增加功能命令回车即可显示,具体使用大家可在自己系统里面查看即可:
- diamond makedb
- diamond v2.1.8.162 (C) Max Planck Society for the Advancement of Science, Benjamin Buchfink, University of Tuebingen
- Documentation, support and updates available at http://www.diamondsearch.org
- Please cite: http://dx.doi.org/10.1038/s41592-021-01101-x Nature Methods (2021)
-
- Options:
- --threads number of CPU threads
- --verbose verbose console output
- --log enable debug log
- --quiet disable console output
- --tmpdir directory for temporary files
- --db database file
- --in input reference file in FASTA format/input DAA files for merge-daa
- --taxonmap protein accession to taxid mapping file
- --taxonnodes taxonomy nodes.dmp from NCBI
- --taxonnames taxonomy names.dmp from NCBI
- --file-buffer-size file buffer size in bytes (default=67108864)
- --no-unlink Do not unlink temporary files.
- --ignore-warnings Ignore warnings
- --no-parse-seqids Print raw seqids without parsing
-
- Error: Missing parameter: database file (--db/-d)
Diamond Blastp 会产生比对得分,你可以根据得分来筛选结果。通过设置一个阈值,只保留得分高于阈值的比对结果。例如:
- diamond blastp -d database.fasta -q query.fasta -o output.m8 --min-score 100
-
- ### --min-score 100 表示只保留得分高于等于 100 的比对结果。
E 值表示在随机情况下,期望观察到给定比对得分的次数。可以根据 E 值来过滤结果,只保留期望值低于设定阈值的比对结果。例如:
- diamond blastp -d database.fasta -q query.fasta -o output.m8 --evalue 1e-5
-
- ### --evalue 1e-5 表示只保留 E 值低于或等于 1e-5 的比对结果。
- diamond blastp -d database.fasta -q query.fasta -o output.m8 --id 97
-
- ### --id 97 表示只保留相似性大于等于 97% 的比对结果。
- ### 使用 AWK 命令根据第一个列(query ID)或其他标识符来提取唯一结果
- sort -k1,1 -u output.m8 > unique_output.m8
- # 打开 Diamond Blastp 输出文件
- with open('output.m8', 'r') as file:
- best_hit = {}
-
- # 逐行读取文件
- for line in file:
- fields = line.strip().split('\t') # 根据制表符分割字段
- query_id, subject_id, percent_identity, alignment_length, e_value, bit_score = fields[:6]
-
- # 如果查询 ID 不在 best_hit 中或当前行比最佳结果更好,则更新最优结果
- if query_id not in best_hit or float(bit_score) > float(best_hit[query_id]['bit_score']):
- best_hit[query_id] = {
- 'subject_id': subject_id,
- 'percent_identity': float(percent_identity),
- 'alignment_length': int(alignment_length),
- 'e_value': float(e_value),
- 'bit_score': float(bit_score)
- }
-
- # 输出最优结果
- for query_id, hit_info in best_hit.items():
- print(f"Query ID: {query_id}")
- print(f"Subject ID: {hit_info['subject_id']}")
- print(f"Percent Identity: {hit_info['percent_identity']}")
- print(f"Alignment Length: {hit_info['alignment_length']}")
- print(f"E-value: {hit_info['e_value']}")
- print(f"Bit Score: {hit_info['bit_score']}")
- print("-------------")
脚本说明:
- # 读取 Diamond Blastp 输出文件
- data <- read.table("output.m8", header = FALSE, sep = "\t")
-
- # 命名列名
- colnames(data) <- c("query_id", "subject_id", "percent_identity", "alignment_length", "e_value", "bit_score")
-
- # 根据查询 ID 获取最优结果
- library(dplyr)
-
- best_hits <- data %>%
- group_by(query_id) %>%
- slice(which.max(bit_score)) # 根据最高比对分数选择最优结果,可以根据其他标准替换 bit_score
-
- # 显示最优结果
- print(best_hits)
脚本说明:
read.table()
函数读取 Diamond Blastp 输出文件。dplyr
包中的 group_by()
和 slice()
函数按照查询 ID 分组,并选择每个查询 ID 的最高比对分数,以获取最优结果。Benjamin Buchfink, Chao Xie, and Daniel H. Huson. Fast and sensitive protein alignment using diamond. Nature methods, 12(1):59–60, Jan 2015.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。