赞
踩
BlackVIP:稳健迁移学习的黑盒视觉提示
在 BlackVIP 中,VP 是由协调器(Coordinator)设计的,并且通过黑盒优化算法(SPSA-GC)来进行优化。
现实世界中的许多AI应用程序都是作为API和专有软件服务的,由于商业侵犯模型所有权问题,不透露实现级别的信息或完整的参数。BlackVIP设计了与原始给定图像相同形状的提示,以覆盖整个图像视图。
我们提出了coordinator协调器,这是一种非对称的自编码器风格的网络,它接收原始图像并为每个单独的图像产生相应的视觉提示。
优化重新参数化的模型而不是提示本身:不优化提示,优化产生提示的coordinator
采用SPSA-GC,基于扰动参数的输出差异估计目标黑盒模型的梯度,然后以基于动量的前瞻方式校正初始估计值。
通过对参数进行随机扰动,观察模型输出的变化来估计目标模型的梯度,不需要直接访问目标模型的内部结构或参数,只通过观察输出的变化来推断梯度信息。
ZOO是一种无导数优化算法,主要通过对输入进行随机扰动,并观察输出的变化来推断目标函数的梯度信息,从而实现优化。
为了研究提示设计的重要性,我们考虑了两个合成数据集:Biased MNIST和Loc-MNIST。
SGD-NAG:使用真梯度
SPSA-GC:比Random Gradient- free (RGF)更快更稳定
合成数据集的即时可视化,与VP不同,我们的BlackVIP设计了输入依赖的条件提示,有助于在分布/对象位置转移下的鲁棒性。
我们开创了黑盒视觉提示,用于预训练模型的现实和稳健适应。我们提出了BlackVIP,它将输入空间提示重新参数化为条件生成网络协调器,并配备了我们的新ZOO算法SPSA-GC,而不是反向传播。BlackVIP不需要模型架构或参数的任何可访问性,并有效地将预训练的模型适应目标下游任务。大量的实证结果表明,BlackVIP在最小参数、最小内存容量、最小API查询和最小成本的情况下,持续提高了少量射击适应、分布移动和对象位置移动的性能。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。