当前位置:   article > 正文

flink采用分离模式提交报错:java.lang.NoSuchMethodError_flink 部署任务时报错:nosuchfielderror: scheduler_mode

flink 部署任务时报错:nosuchfielderror: scheduler_mode

问题背景

最近在写完一个flink项目后打包到集群运行,提交时因为满脑子想着周末怎么去浪,结果提交完发现提交命令忘记了-d参数,无奈只能手动kill掉任务,然后加上-d参数重新提交,结果问题就出现了,flink任务刚刚提交到yarn就会报如下错误:

在这里插入图片描述

排查问题

没有办法,只能顺着错误日志去寻找问题,第一步,先看大致错误:

java.lang.NoSuchMethodError:
org.apache.hadoop.yarn.api.protocolrecords.AllocateRequest.newInstance

为什么没有这个方法?那就进行第二步,去项目定位这个方法:

@Public
@Stable
public abstract class AllocateRequest {

  @Public
  @Stable
  public static AllocateRequest newInstance(int responseID, float appProgress,
      List<ResourceRequest> resourceAsk,
      List<ContainerId> containersToBeReleased,
      ResourceBlacklistRequest resourceBlacklistRequest) {
    return newInstance(responseID, appProgress, resourceAsk,
        containersToBeReleased, resourceBlacklistRequest, null);
  }
  
  @Public
  @Stable
  public static AllocateRequest newInstance(int responseID, float appProgress,
      List<ResourceRequest> resourceAsk,
      List<ContainerId> containersToBeReleased,
      ResourceBlacklistRequest resourceBlacklistRequest,
      List<ContainerResourceIncreaseRequest> increaseRequests) {
    AllocateRequest allocateRequest = Records.newRecord(AllocateRequest.class);
    allocateRequest.setResponseId(responseID);
    allocateRequest.setProgress(appProgress);
    allocateRequest.setAskList(resourceAsk);
    allocateRequest.setReleaseList(containersToBeReleased);
    allocateRequest.setResourceBlacklistRequest(resourceBlacklistRequest);
    allocateRequest.setIncreaseRequests(increaseRequests);
    return allocateRequest;
  }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

但是发现项目中有这个方法,那按理说应该会走到该逻辑,为什么会报错呢?那下一步就该考虑并不是缺少该方法,而是这个方法冲突了?
想到这里,我赶紧去看了一下flink/lib目录下的flink-shaded-hadoop-2-uber-2.8.5-7.0,发现其中也有这个类:

org.apache.hadoop.yarn.api.protocolrecords.AllocateRequest

然后去排查项目中的这个jar包,发现项目中引入了

		<dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-server</artifactId>
            <version>1.4.9</version>
        </dependency>
  • 1
  • 2
  • 3
  • 4
  • 5

而这个依赖中本来带有的hadoop-yarn-api包的版本是2.7.4。

解决问题

所以现在问题的原因很清楚了,就是项目中使用的org.apache.hbase的包中带有hadoop-yarn-api的包,并且版本与自身flink与Hadoop编译包中的hadoop-yarn-api版本冲突,导致提交任务报错。
所以,我们可以换用org.apache.hbase包,或者把scope设置为provided就可以啦

问题补充

但当时还有一个小疑惑,就是为什么jar包冲突了,但是不用分离模式提交就可以运行呢?
我们可以点进去源码看一下,(这里就不详细说了,只跳到最关键的地方)

进入org.apache.flink.client.cli.CliFrontend类找到runProgram方法

private <T> void runProgram(
			CustomCommandLine<T> customCommandLine,
			CommandLine commandLine,
			RunOptions runOptions,
			PackagedProgram program) throws ProgramInvocationException, FlinkException {
		final ClusterDescriptor<T> clusterDescriptor = customCommandLine.createClusterDescriptor(commandLine);

		try {
			final T clusterId = customCommandLine.getClusterId(commandLine);

			final ClusterClient<T> client;

			// directly deploy the job if the cluster is started in job mode and detached
			//如果我们这里采用了分离模式,走的是deployJobCluster方法
			if (clusterId == null && runOptions.getDetachedMode()) { 
				int parallelism = runOptions.getParallelism() == -1 ? defaultParallelism : runOptions.getParallelism();

				final JobGraph jobGraph = PackagedProgramUtils.createJobGraph(program, configuration, parallelism);

				final ClusterSpecification clusterSpecification = customCommandLine.getClusterSpecification(commandLine);
				client = clusterDescriptor.deployJobCluster(
					clusterSpecification,
					jobGraph,
					runOptions.getDetachedMode());

				logAndSysout("Job has been submitted with JobID " + jobGraph.getJobID());

				try {
					client.shutdown();
				} catch (Exception e) {
					LOG.info("Could not properly shut down the client.", e);
				}
				//如果我们这里没采用分离模式,走的是executeProgram方法
			} else {
				final Thread shutdownHook;
				if (clusterId != null) {
					client = clusterDescriptor.retrieve(clusterId);
					shutdownHook = null;
				} else {
					// also in job mode we have to deploy a session cluster because the job
					// might consist of multiple parts (e.g. when using collect)
					final ClusterSpecification clusterSpecification = customCommandLine.getClusterSpecification(commandLine);
					client = clusterDescriptor.deploySessionCluster(clusterSpecification);
					// if not running in detached mode, add a shutdown hook to shut down cluster if client exits
					// there's a race-condition here if cli is killed before shutdown hook is installed
					if (!runOptions.getDetachedMode() && runOptions.isShutdownOnAttachedExit()) {
						shutdownHook = ShutdownHookUtil.addShutdownHook(client::shutDownCluster, client.getClass().getSimpleName(), LOG);
					} else {
						shutdownHook = null;
					}
				}

				try {
					client.setPrintStatusDuringExecution(runOptions.getStdoutLogging());
					client.setDetached(runOptions.getDetachedMode());

					LOG.debug("{}", runOptions.getSavepointRestoreSettings());

					int userParallelism = runOptions.getParallelism();
					LOG.debug("User parallelism is set to {}", userParallelism);
					if (ExecutionConfig.PARALLELISM_DEFAULT == userParallelism) {
						userParallelism = defaultParallelism;
					}

					executeProgram(program, client, userParallelism);
				} finally {
					if (clusterId == null && !client.isDetached()) {
						// terminate the cluster only if we have started it before and if it's not detached
						try {
							client.shutDownCluster();
						} catch (final Exception e) {
							LOG.info("Could not properly terminate the Flink cluster.", e);
						}
						if (shutdownHook != null) {
							// we do not need the hook anymore as we have just tried to shutdown the cluster.
							ShutdownHookUtil.removeShutdownHook(shutdownHook, client.getClass().getSimpleName(), LOG);
						}
					}
					try {
						client.shutdown();
					} catch (Exception e) {
						LOG.info("Could not properly shut down the client.", e);
					}
				}
			}
		} finally {
			try {
				clusterDescriptor.close();
			} catch (Exception e) {
				LOG.info("Could not properly close the cluster descriptor.", e);
			}
		}
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93

我们可以看到,当我们如果用分离模式提交,那么走的是deployJobCluster方法,否则走的是executeProgram方法,两者并不是相同的提交方式,(如果有兴趣的小伙伴可以进入各自方法详细的走一遍提交流程),所以就解释了用不同的方式提交,一种报错,一种不报错了。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/528444
推荐阅读
相关标签
  

闽ICP备14008679号