当前位置:   article > 正文

Python入门量化投资【超详细】_量化交易python培训

量化交易python培训

谈一谈使用Python入门量化投资

0x00 前言

量化交易是使用计算机技术(本文主要指使用Python)帮助投资者分析大量的数据从而制定投资策略,这是属于金融和计算机的交叉领域。

本文是用于指导利用Python进行量化交易的初学者入门使用,限于本人水平有限,大家轻点喷~

0x01 提取数据

前置条件

为了提取股票数据,我们需要用到Quandl 的 API,这个平台拥有大量的经济和金融数据。

首先我们需要安装Python 3和 virtualenv,并通过

virtualenv --python=/usr/bin/python3 <name of env>

  • 1
  • 2

创建虚拟环境。

然后使用

source <env_name>/bin/activate

  • 1
  • 2

激活虚拟环境。

再使用pip安装jupyter-notebook:

pip install jupyter-notebook

  • 1
  • 2

然后再安装pandasquandlnumpy包。

最后运行jupyter-notebook。

提取数据

我们先导入需要的包。

import pandas as pd
import quandl as q

  • 1
  • 2
  • 3

这里pandas可以帮助我们进行数据操作和绘图。

之后我们就调用Quandl API。

q.ApiConfig.api_key = "<API key>”
​
msft_data = q.get("EOD/MSFT", start_date="2010-01-01", end_date="2019-01-01")
​
msft_data.head()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这段代码,我们首先设置了需要的api_key。这个需要去官网获取。

然后调用get方法来获取微软从2010年1月1日到2019年1月1日的股票价格。

然后是查看获取的数据集的前5行。

img

0x02 分析数据

我们先了解数据集的数据构成,这个可以通过info方法查看。

img

如上图所示,我们可以了解到这些数据包含股票的价格信息。

如股票的开盘价和收盘价、调整后的开盘价以及收盘价,这个调整是将股息分配、股票拆分等行为考虑在内,还包括交易量和当日最高和最低价格。

我们还可以通过describe方法分析数据集的最大值、最小值、平均值等数据。

img

我们还可以对这些数据继续进行加工。

比如再进行一次采样。将时间间隔调整为每月、每季度或每年。

img

img

0x04 计算财务回报

我们接下来进行财务回报的计算。

我们要使用pct_change()方法。

import numpy as np
​
daily_close = msft_data[['Adj_Close']]
​
daily_return = daily_close.pct_change()
​
daily_return.fillna(0, inplace=True)
​
print(daily_return)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

我们使用调整的收盘价来计算从开始时间到各个时间的回报。将这个值乘100就得到回报百分比了。

img

我们也可以来计算时间间隔为月的回报率:

mdata = msft_data.resample('M').apply(lambda x: x[-1])
monthly_return = mdata.pct_change()
monthly_return.fillna(0, inplace=True)
print(monthly_return)

  • 1
  • 2
  • 3
  • 4
  • 5

img

部分代码参考至:www.codementor.io/blog/quanti…

---------------------------END---------------------------

题外话

当下这个大数据时代不掌握一门编程语言怎么跟的上脚本呢?当下最火的编程语言Python前景一片光明!如果你也想跟上时代提升自己那么请看一下.

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/542026
推荐阅读
相关标签