赞
踩
pip install lebelme
rename.py文件
import os this_dir_path = './' json_index = 0 # 表示从那个序号开始更改.json文件名 png_index = 0 # 表示从那个序号开始更改.png文件名 for file in os.listdir(this_dir_path): file_path = os.path.join(this_dir_path, file) if os.path.splitext(file_path)[-1] == '.png': new_file_path = '.'+'/'.join((os.path.splitext(file_path)[0].split('\\'))[:-1]) + '/{:0>4}_Color.png'.format(png_index) png_index += 1 print(file_path+'---->'+new_file_path) os.rename(file_path, new_file_path) elif os.path.splitext(file_path)[-1] == '.json': new_file_path = '.'+'/'.join((os.path.splitext(file_path)[0].split('\\'))[:-1]) + '/{:0>4}_Color.json'.format(json_index) json_index += 1 print(file_path+'---->'+new_file_path) os.rename(file_path,new_file_path)
format.py文件
import os
import re
dir_path = './'
pattern = re.compile('"imagePath": "(.+?png)",')
for file in os.listdir(dir_path):
if os.path.splitext(file)[-1] != '.json':
continue
with open(os.path.join(dir_path, file), encoding='utf-8') as f:
content = f.read()
imagePath = pattern.findall(content)[0]
print('imagePath ',imagePath)
new_content = content.replace(imagePath, os.path.splitext(file)[0]+'.png')
with open(os.path.join(dir_path, file), 'w', encoding='utf-8') as nf:
nf.write(new_content)
checkClasses.py文件
import os import re CLASS_NAMES = ['CA001', 'CA002', 'CA003', 'CA004', 'CD001', 'CD002', 'CD003'] CLASS_REAL_NAMES = ['draw_paper', 'roll_paper', 'toothbrush', 'tape','apple', 'pear', 'melon'] CLASS_NAME_DICT = { 'CA001': 'draw_paper', 'CA002': 'roll_paper', 'CA003': 'toothbrush', 'CA004': 'tape', 'CD001': 'apple', 'CD002': 'pear', 'CD003': 'melon', } dir_path = './' pattern = re.compile('"label": "([A-Z]{2}[0-9]{3}(?:.+)?)",') class_ids = [] for file in os.listdir(dir_path): if os.path.splitext(file)[-1] != '.json': continue with open(os.path.join(dir_path, file), 'r+', encoding='utf-8') as f: content = f.read() image_class_ids = pattern.findall(content) for id in image_class_ids: if id not in class_ids: if len(id) > 5: print("Find invalid id !!") content = content.replace(id, id[:5]) with open(os.path.join(dir_path, file), 'w', encoding='utf-8') as f: f.write(content) else: class_ids.append(id) print('一共有{}种class'.format(len(class_ids))) print('分别是') index = 1 for id in class_ids: print('"{}",'.format(id), end="") index += 1 print() index = 1 for id in class_ids: print('"{}":{},'.format(id, index)) index += 1 for id in class_ids: print("'{}',".format(CLASS_NAME_DICT[id]),end="")
可以不适用ID,直接使用真实名字来标注!
import os import json import numpy as np import glob import shutil import cv2 from sklearn.model_selection import train_test_split np.random.seed(41) # 0为背景 classname_to_id = { "CA002": 1, # 从1开始标注 "CA004": 2, "CA003": 3, "CD006": 4, "CD002": 5, "CD001": 6, "ZA001": 7, "ZA003": 8, "ZA002": 9, } class Lableme2CoCo: def __init__(self): self.images = [] self.annotations = [] self.categories = [] self.img_id = 0 self.ann_id = 0 def save_coco_json(self, instance, save_path): json.dump(instance, open(save_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=1) # indent=2 更加美观显示 # 由json文件构建COCO def to_coco(self, json_path_list): self._init_categories() for json_path in json_path_list: obj = self.read_jsonfile(json_path) self.images.append(self._image(obj, json_path)) shapes = obj['shapes'] for shape in shapes: annotation = self._annotation(shape) self.annotations.append(annotation) self.ann_id += 1 self.img_id += 1 instance = {} instance['info'] = 'spytensor created' instance['license'] = ['license'] instance['images'] = self.images instance['annotations'] = self.annotations instance['categories'] = self.categories return instance # 构建类别 def _init_categories(self): for k, v in classname_to_id.items(): category = {} category['id'] = v category['name'] = k self.categories.append(category) # 构建COCO的image字段 def _image(self, obj, path): image = {} from labelme import utils img_x = utils.img_b64_to_arr(obj['imageData']) h, w = img_x.shape[:-1] image['height'] = h image['width'] = w image['id'] = self.img_id image['file_name'] = os.path.basename(path).replace(".json", ".jpg") return image # 构建COCO的annotation字段 def _annotation(self, shape): # print('shape', shape) label = shape['label'] points = shape['points'] annotation = {} annotation['id'] = self.ann_id annotation['image_id'] = self.img_id annotation['category_id'] = int(classname_to_id[label]) annotation['segmentation'] = [np.asarray(points).flatten().tolist()] annotation['bbox'] = self._get_box(points) annotation['iscrowd'] = 0 annotation['area'] = 1.0 return annotation # 读取json文件,返回一个json对象 def read_jsonfile(self, path): with open(path, "r", encoding='utf-8') as f: return json.load(f) # COCO的格式: [x1,y1,w,h] 对应COCO的bbox格式 def _get_box(self, points): min_x = min_y = np.inf max_x = max_y = 0 for x, y in points: min_x = min(min_x, x) min_y = min(min_y, y) max_x = max(max_x, x) max_y = max(max_y, y) return [min_x, min_y, max_x - min_x, max_y - min_y] if __name__ == '__main__': labelme_path = "../../../xianjin_data-3/" saved_coco_path = "../../../xianjin_data-3/" print('reading...') # 创建文件 if not os.path.exists("%scoco/annotations/" % saved_coco_path): os.makedirs("%scoco/annotations/" % saved_coco_path) if not os.path.exists("%scoco/images/train2017/" % saved_coco_path): os.makedirs("%scoco/images/train2017" % saved_coco_path) if not os.path.exists("%scoco/images/val2017/" % saved_coco_path): os.makedirs("%scoco/images/val2017" % saved_coco_path) # 获取images目录下所有的joson文件列表 print(labelme_path + "/*.json") json_list_path = glob.glob(labelme_path + "/*.json") print('json_list_path: ', len(json_list_path)) # 数据划分,这里没有区分val2017和tran2017目录,所有图片都放在images目录下 train_path, val_path = train_test_split(json_list_path, test_size=0.1, train_size=0.9) print("train_n:", len(train_path), 'val_n:', len(val_path)) # 把训练集转化为COCO的json格式 l2c_train = Lableme2CoCo() train_instance = l2c_train.to_coco(train_path) l2c_train.save_coco_json(train_instance, '%scoco/annotations/instances_train2017.json' % saved_coco_path) for file in train_path: # shutil.copy(file.replace("json", "jpg"), "%scoco/images/train2017/" % saved_coco_path) img_name = file.replace('json', 'png') temp_img = cv2.imread(img_name) try: cv2.imwrite("{}coco/images/train2017/{}".format(saved_coco_path, img_name.replace('png', 'jpg')),temp_img) except Exception as e: print(e) print('Wrong Image:', img_name ) continue print(img_name + '-->', img_name.replace('png', 'jpg')) for file in val_path: # shutil.copy(file.replace("json", "jpg"), "%scoco/images/val2017/" % saved_coco_path) img_name = file.replace('json', 'png') temp_img = cv2.imread(img_name) try: cv2.imwrite("{}coco/images/val2017/{}".format(saved_coco_path, img_name.replace('png', 'jpg')), temp_img) except Exception as e: print(e) print('Wrong Image:', img_name) continue print(img_name + '-->', img_name.replace('png', 'jpg')) # 把验证集转化为COCO的json格式 l2c_val = Lableme2CoCo() val_instance = l2c_val.to_coco(val_path) l2c_val.save_coco_json(val_instance, '%scoco/annotations/instances_val2017.json' % saved_coco_path)
将图片转化为JPG格式,并且自动生成CoCo数据集
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。