赞
踩
《基于A*算法的自动泊车全局路径规划算法研究》
《基于ROS平台的仓储AGV系统设计及路径规划研究》
先去读那两篇论文的笔记
前面已经学习了 Dijkstra 算法和 Best-First-Search 算法,A* 算法可以看作是这两种算法的组合
A* 算法的思想核心是:核心想是:每一步的选择既要考虑离初始点的距离,也要考虑离目标点的距
这里首先定义这两个需要考虑的距离(函数),G
用来表示当前位置离起点的距离(也就是走过的路径),H
用来表示当前位置离终点的距离(和Best-First一样的启发式函数,比如曼哈顿距离),那么 A* 算法每一步考虑的就是
A* 算法在运算过程中,每次从优先队列中选取 f(n)
值最小(优先级最高)的节点作为下一个待遍历的节点
A* 算法使用两个集合来表示待遍历的节点,与已经遍历过的节点,这通常称之为 open_set
和close_set
完整的A*算法描述如下:
这里的 open_set 和 close_set 其实就相当于 Dijkstra 算法中的 U 集和 S 集
初始时 S 集中只有起点,U 中是除起点外的其余顶点;open_set 初始时只有顶点,而 close_set 为空
Dijkstra 算法每次迭代时从 U 集中找出路径最短的顶点,并加入 S 集中,同时更新 U 集中顶点的路径及其 parent 节点;A* 算法从 open_set 中选取 f(n) 值最小的节点,加入 close_set,对其相邻节点进行操作,注意如果相邻节点已经在 open_set 中,检查通过当前节点到达该相邻节点的路径是否更短,如果是,则更新相邻节点的 g(n) 值和父节点,这是容易忽略的部分
其实 Dijkstra 算法在更新 U 集时也是更新刚加入 S 集顶点的相邻节点,检查通过当前节点到达该节点相邻节点的路径是否更短,因此 A* 算法也要有相应的操作
启发函数对 A* 算法有很重要的影响
Dijkstra
算法最佳优先搜索
对于网格形式的图,有以下这些启发函数可以使用:
曼哈顿距离
计算曼哈顿距离的函数如下,这里的D是指两个相邻节点之间的移动代价,通常是一个固定的常数
function heuristic(node) =
dx = abs(node.x - goal.x)
dy = abs(node.y - goal.y)
return D * (dx + dy)
对角距离
计算对角距离的函数如下,这里的D2指的是两个斜着相邻节点之间的移动代价
function heuristic(node) =
dx = abs(node.x - goal.x)
dy = abs(node.y - goal.y)
return D * (dx + dy) + (D2 - 2 * D) * min(dx, dy)
欧几里得距离
欧几里得距离是指两个节点之间的直线距离,其函数表示如下:
function heuristic(node) =
dx = abs(node.x - goal.x)
dy = abs(node.y - goal.y)
return D * sqrt(dx * dx + dy * dy)
""" A* grid planning author: Atsushi Sakai(@Atsushi_twi) Nikos Kanargias (nkana@tee.gr) See Wikipedia article (https://en.wikipedia.org/wiki/A*_search_algorithm) """ import math import matplotlib.pyplot as plt show_animation = True class AStarPlanner: def __init__(self, ox, oy, resolution, rr): """ Initialize grid map for a star planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m] """ self.resolution = resolution self.rr = rr self.min_x, self.min_y = 0, 0 self.max_x, self.max_y = 0, 0 self.obstacle_map = None self.x_width, self.y_width = 0, 0 self.motion = self.get_motion_model() self.calc_obstacle_map(ox, oy) class Node: def __init__(self, x, y, cost, parent_index): self.x = x # index of grid self.y = y # index of grid self.cost = cost self.parent_index = parent_index def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( self.cost) + "," + str(self.parent_index) def planning(self, sx, sy, gx, gy): """ A star path search input: s_x: start x position [m] s_y: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path """ start_node = self.Node(self.calc_xy_index(sx, self.min_x), self.calc_xy_index(sy, self.min_y), 0.0, -1) goal_node = self.Node(self.calc_xy_index(gx, self.min_x), self.calc_xy_index(gy, self.min_y), 0.0, -1) open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(start_node)] = start_node while True: if len(open_set) == 0: print("Open set is empty..") break c_id = min( open_set, key=lambda o: open_set[o].cost + self.calc_heuristic(goal_node, open_set[ o])) current = open_set[c_id] # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current.x, self.min_x), self.calc_grid_position(current.y, self.min_y), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit( 0) if event.key == 'escape' else None]) if len(closed_set.keys()) % 10 == 0: plt.pause(0.001) if current.x == goal_node.x and current.y == goal_node.y: print("Find goal") goal_node.parent_index = current.parent_index goal_node.cost = current.cost break # Remove the item from the open set del open_set[c_id] # Add it to the closed set closed_set[c_id] = current # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): node = self.Node(current.x + self.motion[i][0], current.y + self.motion[i][1], current.cost + self.motion[i][2], c_id) n_id = self.calc_grid_index(node) # If the node is not safe, do nothing if not self.verify_node(node): continue if n_id in closed_set: continue if n_id not in open_set: open_set[n_id] = node # discovered a new node else: if open_set[n_id].cost > node.cost: # This path is the best until now. record it open_set[n_id] = node rx, ry = self.calc_final_path(goal_node, closed_set) return rx, ry def calc_final_path(self, goal_node, closed_set): # generate final course rx, ry = [self.calc_grid_position(goal_node.x, self.min_x)], [ self.calc_grid_position(goal_node.y, self.min_y)] parent_index = goal_node.parent_index while parent_index != -1: n = closed_set[parent_index] rx.append(self.calc_grid_position(n.x, self.min_x)) ry.append(self.calc_grid_position(n.y, self.min_y)) parent_index = n.parent_index return rx, ry @staticmethod def calc_heuristic(n1, n2): w = 1.0 # weight of heuristic d = w * math.hypot(n1.x - n2.x, n1.y - n2.y) return d def calc_grid_position(self, index, min_position): """ calc grid position :param index: :param min_position: :return: """ pos = index * self.resolution + min_position return pos def calc_xy_index(self, position, min_pos): return round((position - min_pos) / self.resolution) def calc_grid_index(self, node): return (node.y - self.min_y) * self.x_width + (node.x - self.min_x) def verify_node(self, node): px = self.calc_grid_position(node.x, self.min_x) py = self.calc_grid_position(node.y, self.min_y) if px < self.min_x: return False elif py < self.min_y: return False elif px >= self.max_x: return False elif py >= self.max_y: return False # collision check if self.obstacle_map[node.x][node.y]: return False return True def calc_obstacle_map(self, ox, oy): self.min_x = round(min(ox)) self.min_y = round(min(oy)) self.max_x = round(max(ox)) self.max_y = round(max(oy)) print("min_x:", self.min_x) print("min_y:", self.min_y) print("max_x:", self.max_x) print("max_y:", self.max_y) self.x_width = round((self.max_x - self.min_x) / self.resolution) self.y_width = round((self.max_y - self.min_y) / self.resolution) print("x_width:", self.x_width) print("y_width:", self.y_width) # obstacle map generation self.obstacle_map = [[False for _ in range(self.y_width)] for _ in range(self.x_width)] for ix in range(self.x_width): x = self.calc_grid_position(ix, self.min_x) for iy in range(self.y_width): y = self.calc_grid_position(iy, self.min_y) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.rr: self.obstacle_map[ix][iy] = True break @staticmethod def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstacle positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "xb") plt.grid(True) plt.axis("equal") a_star = AStarPlanner(ox, oy, grid_size, robot_radius) rx, ry = a_star.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(0.001) plt.show() if __name__ == '__main__': main()
输出如下
E:\Junior\Code\path_plan_test\a_star_py\a_star_py\a_star_py.py start!!
min_x: -10
min_y: -10
max_x: 60
max_y: 60
x_width: 35
y_width: 35
Find goal
A* 算法主要体现在 planning()
函数中,过程与 A* 算法的描述是对应的
def planning(self, sx, sy, gx, gy): """ A star path search input: s_x: start x position [m] s_y: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path """ start_node = self.Node(self.calc_xy_index(sx, self.min_x), self.calc_xy_index(sy, self.min_y), 0.0, -1) goal_node = self.Node(self.calc_xy_index(gx, self.min_x), self.calc_xy_index(gy, self.min_y), 0.0, -1) open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(start_node)] = start_node while True: if len(open_set) == 0: print("Open set is empty..") break c_id = min( open_set, key=lambda o: open_set[o].cost + self.calc_heuristic(goal_node, open_set[ o])) current = open_set[c_id] # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current.x, self.min_x), self.calc_grid_position(current.y, self.min_y), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit( 0) if event.key == 'escape' else None]) if len(closed_set.keys()) % 10 == 0: plt.pause(0.001) if current.x == goal_node.x and current.y == goal_node.y: print("Find goal") goal_node.parent_index = current.parent_index goal_node.cost = current.cost break # Remove the item from the open set del open_set[c_id] # Add it to the closed set closed_set[c_id] = current # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): node = self.Node(current.x + self.motion[i][0], current.y + self.motion[i][1], current.cost + self.motion[i][2], c_id) n_id = self.calc_grid_index(node) # If the node is not safe, do nothing if not self.verify_node(node): continue if n_id in closed_set: continue if n_id not in open_set: open_set[n_id] = node # discovered a new node else: if open_set[n_id].cost > node.cost: # This path is the best until now. record it open_set[n_id] = node rx, ry = self.calc_final_path(goal_node, closed_set) return rx, ry
1、初始化起始节点和目标节点,并将起始节点添加到 open_set
start_node = self.Node(self.calc_xy_index(sx, self.min_x),
self.calc_xy_index(sy, self.min_y), 0.0, -1)
goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
self.calc_xy_index(gy, self.min_y), 0.0, -1)
open_set, closed_set = dict(), dict()
open_set[self.calc_grid_index(start_node)] = start_node
2、当 open_set 为空时跳出 while 循环
if len(open_set) == 0:
print("Open set is empty..")
break
3、从 open_set 中选择具有最小 f(n) 值的节点
c_id = min(
open_set,
key=lambda o: open_set[o].cost + self.calc_heuristic(goal_node,
open_set[
o]))
current = open_set[c_id]
4、如果选择的节点是目标节点,表示找到了最短路径,可以停止搜索
if current.x == goal_node.x and current.y == goal_node.y:
print("Find goal")
goal_node.parent_index = current.parent_index
goal_node.cost = current.cost
break
5、将该节点移出 open_set,并将其添加到 close_set
# Remove the item from the open set
del open_set[c_id]
# Add it to the closed set
closed_set[c_id] = current
6、对该节点的相邻节点进行操作
# expand_grid search grid based on motion model for i, _ in enumerate(self.motion): node = self.Node(current.x + self.motion[i][0], current.y + self.motion[i][1], current.cost + self.motion[i][2], c_id) n_id = self.calc_grid_index(node) # If the node is not safe, do nothing if not self.verify_node(node): continue if n_id in closed_set: continue if n_id not in open_set: open_set[n_id] = node # discovered a new node else: if open_set[n_id].cost > node.cost: # This path is the best until now. record it open_set[n_id] = node
7、回溯每个节点的父节点来还原整条路径
rx, ry = self.calc_final_path(goal_node, closed_set)
path
,用于存储每个位置的方格对应的“父方格”的坐标valF
保序每个方格目前情况下最小的 F 值open
表中弹出的是F值最小的节点,选择使用优先队列来作为 open 表visit
二维数组作为 close 表,初始值false,对应位置为true时表示已经加入 close 表#include<iostream> #include<algorithm> #include<string> #include<vector> #include<cmath> #include<queue> #define N 6 // 棋盘/迷宫 的阶数 using namespace std; class Node { public: int x, y; // 节点所在位置 int F, G, H; // G:从起点开始,沿着产的路径,移动到网格上指定方格的移动耗费。 // H:从网格上那个方格移动到终点B的预估移动耗费,使用曼哈顿距离。 // F = G + H Node(int a, int b) :x(a), y(b) {} // 重载操作符,使优先队列以F值大小为标准维持堆 bool operator < (const Node& a) const { return F > a.F; } }; // 定义八个方向 int dir[8][2] = { {-1,-1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1} }; // 优先队列,就相当于open表 priority_queue<Node>que; // 棋盘 int qp[N][N] = { {0,0,0,0,0,0}, {0,1,1,0,1,1}, {0,0,1,0,0,0}, {0,0,1,1,1,0}, {0,1,1,0,0,0}, {1,1,0,0,0,0} }; bool visit[N][N]; // 访问情况记录,close表 int valF[N][N]; // 记录每个节点对应的F值 int path[N][N][2]; // 存储每个节点的父节点 int Manhuattan(int x, int y, int x1, int y1); // 计算曼哈顿距离 bool NodeIsLegal(int x, int y, int xx, int yy); // 判断位置合法性 void A_start(int x0, int y0, int x1, int y1); // A*算法 void PrintPath(int x1, int y1); // 打印路径 /* ----------------主函数------------------- */ int main() { fill(visit[0], visit[0] + N * N, false); // 将visit数组赋初值false fill(valF[0], valF[0] + N * N, 0); // 初始化F全为0 fill(path[0][0], path[0][0] + N * N * 2, -1); // 路径同样赋初值-1 // // 起点 // 终点 int x0, y0, x1, y1; cout << "输入起点:"; cin >> x0 >> y0; cout << "输入终点:"; cin >> x1 >> y1; x0--; y0--; x1--; y1--; if (!NodeIsLegal(x0, y0, x0, y0)) { cout << "非法起点!" << endl; return 0; } A_start(x0, y0, x1, y1); // A*算法 PrintPath(x1, y1); // 打印路径 } /* ----------------自定义函数------------------ */ void A_start(int x0, int y0, int x1, int y1) { // 初始化起点 Node node(x0, y0); node.G = 0; node.H = Manhuattan(x0, y0, x1, y1); node.F = node.G + node.H; valF[x0][y0] = node.F; // 起点加入open表 que.push(node); while (!que.empty()) { Node node_top = que.top(); que.pop(); visit[node_top.x][node_top.y] = true; // 访问该点,加入closed表 if (node_top.x == x1 && node_top.y == y1) // 到达终点 break; // 遍历node_top周围的8个位置 for (int i = 0; i < 8; i++) { Node node_next(node_top.x + dir[i][0], node_top.y + dir[i][1]); // 创建一个node_top周围的节点 // 该节点坐标合法 且 未加入close表 if (NodeIsLegal(node_next.x, node_next.y, node_top.x, node_top.y) && !visit[node_next.x][node_next.y]) { // 计算从起点并经过node_top节点到达该节点所花费的代价 node_next.G = node_top.G + int(sqrt(pow(dir[i][0], 2) + pow(dir[i][1], 2)) * 10); // 计算该节点到终点的曼哈顿距离 node_next.H = Manhuattan(node_next.x, node_next.y, x1, y1); // 从起点经过node_top和该节点到达终点的估计代价 node_next.F = node_next.G + node_next.H; // node_next.F < valF[node_next.x][node_next.y] 说明找到了更优的路径,则进行更新 // valF[node_next.x][node_next.y] == 0 说明该节点还未加入open表中,则加入 if (node_next.F < valF[node_next.x][node_next.y] || valF[node_next.x][node_next.y] == 0) { // 保存该节点的父节点 path[node_next.x][node_next.y][0] = node_top.x; path[node_next.x][node_next.y][1] = node_top.y; valF[node_next.x][node_next.y] = node_next.F; // 修改该节点对应的valF值 que.push(node_next); // 加入open表 } } } } } void PrintPath(int x1, int y1) { if (path[x1][y1][0] == -1 || path[x1][y1][1] == -1) { cout << "没有可行路径!" << endl; return; } int x = x1, y = y1; int a, b; while (x != -1 || y != -1) { qp[x][y] = 2; // 将可行路径上的节点赋值为2 a = path[x][y][0]; b = path[x][y][1]; x = a; y = b; } // □表示未经过的节点, █表示障碍物, ☆表示可行节点 string s[3] = { "□", "█", "☆" }; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) cout << s[qp[i][j]] << "\t"; cout << endl; } } int Manhuattan(int x, int y, int x1, int y1) { return (abs(x - x1) + abs(y - y1)) * 10; } bool NodeIsLegal(int x, int y, int xx, int yy) { if (x < 0 || x >= N || y < 0 || y >= N) return false; // 判断边界 if (qp[x][y] == 1) return false; // 判断障碍物 // 两节点成对角型且它们的公共相邻节点存在障碍物 if (x != xx && y != yy && (qp[x][yy] == 1 || qp[xx][y] == 1)) return false; return true; }
运行输出如下
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。