赞
踩
目前ChatGPT已经更新到4,它给人类带来的便利是难以想象。之前 ChatGPT 就火得一塌糊涂,甚至可以用它来帮我们编程序,但是编好的程序还要切换窗口复制粘贴,有没有什么更轻便的方式呢?最近在pycharm中看到一个神器插件——NexchatGPT,直接在pycharm界面中就可以使用,非常的方便,跟随这边教程,一分钟带你安装好这一高效插件!
第一步点击上方的文件,点击设置:
第二步点击插件:
第三步搜索框中搜索nexchatGPT,点击安装:
第四步输入你想问的问题:
正常的话,底部会出现nexchatGPT,直接在搜索框搜索问题就可以了如果没有出现,点击视图-工具窗口-nexchatGPT就可以调出来了
现在开始向chatGPT问你想问的问题吧!
问题:请用python语言写出基于CNN的猫狗识别代码,并附上详细注释
# 导入必要的库
import os
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.preprocessing.image import ImageDataGenerator
# 设定参数
img_width, img_height = 150, 150
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 2000
nb_validation_samples = 800
epochs = 50
batch_size = 16
# 创建模型
model = Sequential()
# 添加卷积层
model.add(Conv2D(32, (3, 3), input_shape=(img_width, img_height, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 添加更多的卷积层
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 添加神经网络层
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
# 编译模型
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# 创建训练数据生成器
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# 加载训练数据
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
# 创建验证数据生成器
test_datagen = ImageDataGenerator(rescale=1. / 255)
# 加载验证数据
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
# 训练模型
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
# 保存模型
model.save_weights('models/basic_cnn_20_epochs.h5')
第一步点击上方的文件,点击设置:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。