赞
踩
前置条件(安装最新的opencv4.4)教程链接:https://blog.csdn.net/qq_34717531/article/details/107763872
- import cv2
- import numpy as np
- import time
-
-
- # Load the YOLOv3 model with OpenCV.
- net = cv2.dnn.readNet("yolov4-tiny.weights", "yolov4-tiny.cfg")
-
- # Get the names of all layers in the network.
- layer_names = net.getLayerNames()
- # Extract the names of the output layers by finding their indices in layer_names.
- output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
-
- # Initialise a list to store the classes names.
- classes = []
- # Set each line in "coco.names" to an entry in the list, stripping whitespace.
- with open("coco.names", "r") as f:
- classes = [line.strip() for line in f.readlines()]
-
- # Define a font to be used when displaying class names.
- FONT = cv2.FONT_HERSHEY_PLAIN
- # Initialise a random color to represent each class.
- colors = np.random.uniform(0, 255, size=(len(classes), 3))
- # Define a confidence threshold for detections.
- conf_thresh = 0.5
-
- # Initialise a video capture object with the first camera.
- cap = cv2.VideoCapture("1.mp4")
- fps = int(cap.get(cv2.CAP_PROP_FPS))
- width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- fourcc = cv2.VideoWriter_fourcc(*'XVID')
- videoWriter = cv2.VideoWriter('11.avi', fourcc, int(fps), (int(width),int(height)))
-
- # Initialise a frame counter and get the current time for FPS calculation purposes.
- frame_id = 0
- time_start = time.time()
-
- while True:
- # Read the current frame from the camera.
- _, frame = cap.read()
- # Add 1 to the frame count every time a frame is read.
- frame_id += 1
-
- # Pre-process the frame by applying the same scaling used when training the model, resizing to the size
- # expected by this particular YOLOv3 model, and swapping from BGR (used by OpenCV) to RGB (used by the model).
- blob = cv2.dnn.blobFromImage(frame, 1 / 255, (416, 416), swapRB=True)
-
- # Pass the processed frame through the neural network to get a prediction.
- net.setInput(blob)
- outs = net.forward(output_layers)
-
- # Initialise arrays for storing confidence, class ID and coordinate values for detected boxes.
- confidences = []
- class_ids = []
- boxes = []
-
- # Loop through all the detections in each of the three output scales of YOLOv3.
- for out in outs:
- for detection in out:
- # Get the class probabilities for this box detection.
- scores = detection[5:]
- # Find the class with the highest score for the box.
- class_id = np.argmax(scores)
- # Extract the score of that class.
- confidence = scores[class_id]
- # If that score is higher than the set threshold, execute the code below.
- if confidence > conf_thresh:
- # Get the shape of the unprocessed frame.
- height, width, channels = frame.shape
- # Use the detected box ratios to get box coordinates which apply to the input image.
- center_x = int(detection[0] * width)
- center_y = int(detection[1] * height)
- w = int(detection[2] * width)
- h = int(detection[3] * height)
- # Use the center, width and height coordinates to calculate the coordinates for the top left
- # point of the box, which is required for drawing boxes with OpenCV.
- x = int(center_x - w/2)
- y = int(center_y - h/2)
-
- # Populate the arrays with the information for this box.
- confidences.append(float(confidence))
- class_ids.append(class_id)
- boxes.append([x, y, w, h])
-
- # Apply non-max suppression to get rid of overlapping boxes.
- indexes = cv2.dnn.NMSBoxes(boxes, confidences, conf_thresh, 0.4)
-
- # Iterate through the detected boxes.
- for i in range(len(boxes)):
- # If the box remained after NMS.
- if i in indexes:
- # Extract the coordinates of the box.
- x, y, w, h = boxes[i]
- # Extract the class label from the class ID.
- label = str(classes[class_ids[i]])
- # Extract the confidence for the detected class.
- confidence = confidences[i]
- # Get the color for that class.
- color = colors[class_ids[i]]
- # Draw the box.
- cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
- # Display the class label and the confidence inside the box.
- cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y + 30), FONT, 2, color, 2)
-
-
- # Calculate the elapsed time since starting the loop.
- elapsed_time = time.time() - time_start
- # Calculate the average FPS performance to this point.
- fps = frame_id/elapsed_time
- # Display the FPS at the top left corner.
- cv2.putText(frame, "FPS: " + str(round(fps, 2)), (8, 30), FONT, 2, (0, 0, 0), 2)
- videoWriter.write(frame)
- # Show the frame.
- cv2.imshow("Camera", frame)
- # Wait at least 1ms for key event and record the pressed key.
-
- key = cv2.waitKey(1)
- # If the pressed key is ESC (27), break the loop.
- if key == 27:
- break
-
- # Release the camera and destroy all windows.
- cap.release()
- cv2.destroyAllWindows()
总结:yolov4-tiny比yolov3-tiny速度慢一点点(还是可以实时,我的cpu是 i7-9700K),效果却好很多。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。