赞
踩
ardware Environment(Ascend/GPU/CPU): CPU
Software Environment:
– MindSpore version (source or binary): 1.6.0
– Python version (e.g., Python 3.7.5): 3.7.6
– OS platform and distribution (e.g., Linux Ubuntu 16.04): Ubuntu 4.15.0-74-generic
– GCC/Compiler version (if compiled from source):
此案例使用自定义可迭代数据集进行训练,在训练过程中,第一个epoch数据正常迭代,第二个epoch就会报错,自定义数据代码如下:
- import numpy as np
- import mindspore.dataset as ds
- from tqdm import tqdm
-
- class IterDatasetGenerator:
- def __init__(self, datax, datay, classes_per_it, num_samples, iterations):
- self.__iterations = iterations
- self.__data = datax
- self.__labels = datay
- self.__iter = 0
- self.classes_per_it = classes_per_it
- self.sample_per_class = num_samples
- self.classes, self.counts = np.unique(self.__labels, return_counts=True)
- self.idxs = range(len(self.__labels))
- self.indexes = np.empty((len(self.classes), max(self.counts)), dtype=int) * np.nan
- self.numel_per_class = np.zeros_like(self.classes)
- for idx, label in tqdm(enumerate(self.__labels)):
- label_idx = np.argwhere(self.classes == label).item()
- self.indexes[label_idx, np.where(np.isnan(self.indexes[label_idx]))[0][0]] = idx
- self.numel_per_class[label_idx] = int(self.numel_per_class[label_idx]) + 1
-
- def __next__(self):
- spc = self.sample_per_class
- cpi = self.classes_per_it
-
- if self.__iter >= self.__iterations:
- raise StopIteration
- else:
- batch_size = spc * cpi
- batch = np.random.randint(low=batch_size, high=10 * batch_size, size=(batch_size), dtype=np.int64)
- c_idxs = np.random.permutation(len(self.classes))[:cpi]
- for i, c in enumerate(self.classes[c_idxs]):
- index = i*spc
- ci = [c_i for c_i in range(len(self.classes)) if self.classes[c_i] == c][0]
- label_idx = list(range(len(self.classes)))[ci]
- sample_idxs = np.random.permutation(int(self.numel_per_class[label_idx]))[:spc]
- ind = 0
- for i in sample_idxs:
- batch[index+ind] = self.indexes[label_idx]
- ind = ind + 1
- batch = batch[np.random.permutation(len(batch))]
- data_x = []
- data_y = []
- for b in batch:
- data_x.append(self.__data<b>)
- data_y.append(self.__labels<b>)
- self.__iter += 1
- item = (data_x, data_y)
- return item
-
- def __iter__(self):
- return self
-
- def __len__(self):
- return self.__iterations
-
- np.random.seed(58)
- data1 = np.random.sample((500,2))
- data2 = np.random.sample((500,1))
- dataset_generator = IterDatasetGenerator(data1,data2,5,10,10)
- dataset = ds.GeneratorDataset(dataset_generator,["data","label"],shuffle=False)
- epochs=3
- for epoch in range(epochs):
- for data in dataset.create_dict_iterator():
- print("success")
报错信息:RuntimeError: Exception thrown from PyFunc. Unable to fetch data from GeneratorDataset, try iterate the source function of GeneratorDataset or check value of num_epochs when create iterator.
每次数据迭代的过程中,self.__iter会累加,第二个epoch的预取时,self.__iter已经累计到设置好的iterations的值,导致self.__iter >= self.__iterations,循环结束。
在def iter(self):中加入清零操作,设置self.__iter = 0
此时执行成功,输出如下:
在mindspore1.3.0中,用户自定义训练,使用Generator dataset迭代数据报错。错误截图如下:
此报错中,dataset 的 len 函数返回值是36,但是真实的 next 返回的数据量只有35条,导致报错,可将返回值改为小于35的数进行快速验证。
1、找到报错的用户代码行:for data in dataset.create_dict_iterator():;
2、根据报错信息提示,无法从GeneratorDataset获取数据,检查是否在自定义数据的时候就出现问题。打印运行中的过程数据,发现第一个epoch数据读取完后,真实读取的数据条数与__len__是相等的,没有问题。但由于没有清零操作,在第二个epoch预取时self.__iter >= self.__iterations,循环结束,导致第二个epoch取不到数据报错。
此类问题的根本原因是需要获取的数据索引与数据量对不上,在构造可迭代的的数据集类时需要注意每次运行后数据清零的问题,在快速验证时,也需要满足索引小于数据总量的条件。
mindspore文档->数据管道->数据加载->自定义数据集加载->构造可迭代的数据集类
数据集加载 — MindSpore r1.1 documentation
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。