当前位置:   article > 正文

机器学习-6-对随机梯度下降算法SGD的理解

机器学习-6-对随机梯度下降算法SGD的理解

参考一文带您了解随机梯度下降(Stochastic Gradient Descent):python代码示例
参考sklearn-SGDClassifier

1 梯度下降

在机器学习领域,梯度下降扮演着至关重要的角色。梯度下降是一种优化算法,通过迭代沿着由梯度定义的最陡下降方向,以最小化函数。类似于图中的场景,可以将其比喻为站在山巅,希望找到通往山谷最低点的最佳路径。梯度下降就如同引导您寻找下山的最优路线一样。
在这里插入图片描述

梯度下降算法之所以美妙,是因为它的简洁和优雅。其工作原理简述如下:从函数上的一个随机点开始,比如山巅的随机起点。接着,计算该点处函数的梯度(斜率),类似于在山上四处寻找最陡的坡度。一旦确定了方向,就向该方向迈进一步,然后重新计算坡度。反复进行这个过程直至到达底部。

每一步的大小由学习率(the learning rate)来决定。然而,如果学习率太小,可能需要很长时间才能到达底部;反之,如果太大,可能会越过最低点。找到正确的平衡是算法成功的关键。

梯度下降另一个优点是其通用性。它几乎可以应用于任何函数,尤其是那些无法通过解析方法求解的函数。这使得梯度下降在解决各类机器学习问题时(从简单的线性回归到复杂的神

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/643718
推荐阅读
相关标签
  

闽ICP备14008679号