当前位置:   article > 正文

spark流式读取hdfs中数据_sparkstreaming消费方式及区别,spark读取hdfs的数据流程

sparkstreaming消费方式及区别,spark读取hdfs的数据流程

名词解释:

spark streaming:
定义
:一个对实时数据进行高容通量、容错处理的流式处理系统,可以对多种数据源进行Map、reduce和join等复杂操作,并将结果保存到外部文件系统、数据库活应用到实时仪表盘。


流式数据:像流水一样一点一点流过来流式数据被封装成二进制的流。
流式处理:同样像流水一样一点点处理。如果全部接受数据以后在处理的话会有很大延迟也会消耗大量内存。
计算流程:Sparkstreaming是将流式计算分解成短小的批处理作业。
spark streaming在内部的处理机制是接收实时流的数据,并根据一定的时间间隔拆分成一批批的数据,然后通过spark Engine处理这批数据,最终得到处理后的一批批结果数据。


#spark-shell

scala>

spark:


一:流式读取数据 方法一


import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._ 




val ssc = new StreamingContext(sc, Seconds(10))




//读取hdfs上/sdzn_yhhx/tours_details/目录下的文件

val ssc = new StreamingContext(sc, Seconds(2))//Seconds(2)刷新间隔时间

val lines = ssc.textFileStream("hdfs://192.168.200.45:8022/sdzn_yhhx/tours_details/")
val words = lines.flatMap(_.split(","))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)


wordCounts.print()
wordCounts.saveAsTextFiles("hdfs://192.168.200.45:8022/sdzn_yhhx/spark/")//指定计算结果的存储路径
ssc.start()
ssc.awaitTermination()




最后在hdfs上/sdzn_yhhx/tours_details/目录下的文件动态添加数据文件
可在指定hdfs://192.168.200.45:8022/sdzn_yhhx/spark/下查看计算结果








二:流式读取数据方法二  

编写计算词频的程序:

val lines = sc.textFile("hdfs://192.168.200.45:8022/sdzn_yhhx/tours_details/")

val words = lines.flatMap(_.split(","))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.collect().foreach(println)
wordCounts.stop()

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/644744
推荐阅读
相关标签
  

闽ICP备14008679号