嘟嘟嘟
这题不愧是冬令营的题,有思维难度。
题面就是说有一个完全图,让你给一些无向边定向,使三元环最多。
这题关键就是怎么计数三元环。直接记非常难,所以我们要正难则反!三元环总数是,然后考虑什么情况会破坏三元环:当一个点的出边大于1时,记是的出边数量,则破坏的三元环数量就是,所以三元环总数是。所以我们要最小化后面的那个东西。
观察,发现这东西其实是一个等比数列(这都能发现)。所以我们把一个点拆成个点,分别向汇点连容量为1,费用为的边。
然后把边看成点。对于一条无向边,分别向点连一条容量为1,费用为0的边,表示可以让其中一个点的出度+1;对于一条指向的有向边,就只向点连一条容量为1,费用为0的边。最后从源点向所有边代表的点连一条容量为1,费用为0的边。
至于输出矩阵,看对应边是否满流即可。
- #include<cstdio>
- #include<iostream>
- #include<cmath>
- #include<algorithm>
- #include<cstring>
- #include<cstdlib>
- #include<cctype>
- #include<vector>
- #include<stack>
- #include<queue>
- using namespace std;
- #define enter puts("")
- #define space putchar(' ')
- #define Mem(a, x) memset(a, x, sizeof(a))
- #define In inline
- typedef long long ll;
- typedef double db;
- const int INF = 0x3f3f3f3f;
- const db eps = 1e-8;
- const int maxn = 105;
- const int maxN = 2e4 + 5;
- const int maxe = 1e7 + 5;
- inline ll read()
- {
- ll ans = 0;
- char ch = getchar(), last = ' ';
- while(!isdigit(ch)) last = ch, ch = getchar();
- while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
- if(last == '-') ans = -ans;
- return ans;
- }
- inline void write(ll x)
- {
- if(x < 0) x = -x, putchar('-');
- if(x >= 10) write(x / 10);
- putchar(x % 10 + '0');
- }
-
- int n, t, a[maxn][maxn];
- struct Edge
- {
- int nxt, from, to, cap, cos;
- }e[maxe];
- int head[maxN], ecnt = -1;
- In void addEdge(int x, int y, int w, int c)
- {
- e[++ecnt] = (Edge){head[x], x, y, w, c};
- head[x] = ecnt;
- e[++ecnt] = (Edge){head[y], y, x, 0, -c};
- head[y] = ecnt;
- }
-
- bool in[maxN];
- int dis[maxN], pre[maxN], flow[maxN];
- In bool spfa()
- {
- Mem(dis, 0x3f), Mem(in, 0);
- dis[0] = 0, flow[0] = INF;
- queue<int> q; q.push(0);
- while(!q.empty())
- {
- int now = q.front(); q.pop(); in[now] = 0;
- for(int i = head[now], v; ~i; i = e[i].nxt)
- {
- if(dis[v = e[i].to] > dis[now] + e[i].cos && e[i].cap > 0)
- {
- dis[v] = dis[now] + e[i].cos;
- pre[v] = i;
- flow[v] = min(flow[now], e[i].cap);
- if(!in[v]) q.push(v), in[v] = 1;
- }
- }
- }
- return dis[t] ^ INF;
- }
- int minCost = 0;
- In void update()
- {
- int x = t;
- while(x)
- {
- int i = pre[x];
- e[i].cap -= flow[t];
- e[i ^ 1].cap += flow[t];
- x = e[i].from;
- }
- minCost += flow[t] * dis[t];
- }
- In int MCMF()
- {
- minCost = 0;
- while(spfa()) update();
- return minCost;
- }
-
- In int N(int x, int y) {return n + (x - 1) * n + y;}
-
- int ans[maxn][maxn];
- In void solve(int x, int y)
- {
- for(int i = head[N(x, y)], v; ~i; i = e[i].nxt)
- {
- v = e[i].to;
- if(v && v <= n && !e[i].cap)
- {
- if(v == y) ans[x][y] = 1;
- else ans[y][x] = 1;
- }
- }
- }
-
- int main()
- {
- Mem(head, -1);
- n = read(); t = n * n + n + 1;
- for(int i = 1; i <= n; ++i)
- for(int j = 1; j <= n; ++j) a[i][j] = read();
- for(int i = 1; i <= n; ++i)
- for(int j = i + 1; j <= n; ++j)
- {
- addEdge(0, N(i, j), 1, 0);
- if(a[i][j] == 2)
- {
- addEdge(N(i, j), i, 1, 0);
- addEdge(N(i, j), j, 1, 0);
- }
- else if(a[i][j] == 1) addEdge(N(i, j), j, 1, 0);
- else addEdge(N(i, j), i, 1, 0);
- }
- for(int i = 1; i <= n; ++i)
- for(int j = 0; j < n; ++j) addEdge(i, t, 1, j);
- write(1LL * n * (n - 1) * (n - 2) / 6 - MCMF()), enter;
- for(int i = 1; i <= n; ++i)
- for(int j = i + 1; j <= n; ++j) solve(i, j);
- for(int i = 1; i <= n; ++i, enter)
- for(int j = 1; j <= n; ++j) write(ans[i][j]), space;
- return 0;
- }