赞
踩
把这些基础算法题掌握好,基础不牢地动山摇,后面中级题很多都是在这些基础题的基础上的。
前序遍历题目如下:
root节点是A节点(下图的A节点),然后让你按照下图数字的顺序依次打印出节点。
我们可以看到这其中的规律,就是深度优先遍历,先遍历左子树,再遍历右子树,这里我们不用递归,因为一些大厂严格要求二叉树遍历不用递归,递归太简单了。
重点思路就是:深度优先遍历,先遍历左子树,再遍历右子树,
所以,我们需要一套如何遍历一颗二叉树,并且是先左子树,再右子树的通用模板,如下
var Traversal = function(root) {
const stack = [];
while (root || stack.length){
while(root){
stack.push(root);
root = root.left;
}
root = stack.pop();
root = root.right;
}
return res;
};
我们结合图片发现这个遍历产生的整体压栈的顺序是
我们把上面入栈的元素按顺序排列一下就是,A、B、D、E、C、F,而这就是前序遍历的顺序!解答完毕!
是不是很有意思,下面的中序遍历,我们看看出栈顺序是不是中序遍历的要求:D、B、E、A、C、F(这就是中序遍历的要求,好了,两个题解决)
放具体前序遍历代码:
var preorderTraversal = function(root) {
// 初始化数据
const res =[];
const stack = [];
while (root || stack.length){
while(root){
res.push(root.val);
stack.push(root);
root = root.left;
}
root = stack.pop();
root = root.right;
}
return res;
};
中序遍历是一个意思,在前序遍历的基础上改造一下
var preorderTraversal = function(root) {
// 初始化数据
const res =[];
const stack = [];
while (root || stack.length){
while(root){
stack.push(root);
root = root.left;
}
root = stack.pop();
res.push(root.val);
root = root.right;
}
return res;
};
后序遍历有点不太一样,但是套路是一样的,我们需要先遍历右子树,再遍历左子树,反着来,就可以了,代码如下:
var postorderTraversal = function(root) {
// 初始化数据
const res =[];
const stack = [];
while (root || stack.length){
while(root){
stack.push(root);
res.unshift(root.val);
root = root.right;
}
root = stack.pop();
root = root.left;
}
return res;
};
这个题简而言之就是判断一个二叉树是对称的,比如说:
二叉树 [1,2,2,3,4,4,3] 是对称的。
1
/ \
2 2
/ \ / \
3 4 4 3
但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:
1
/ \
2 2
\ \
3 3
思路:
递归解决:
function isSame(leftNode, rightNode){
if(leftNode === null && rightNode === null) return true;
if(leftNode === null || rightNode === null) return false;
return leftNode.val === rightNode.val && isSame(leftNode.left, rightNode.right) && isSame(leftNode.right, rightNode.left)
}
var isSymmetric = function(root) {
if(!root) return root;
return isSame(root.left, root.right);
};
这个题在面试滴滴的时候遇到过,主要是掌握二叉树遍历的套路
var maxDepth = function(root) {
if(!root) return root;
let ret = 1;
function
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。