赞
踩
这学期有一门运筹学,讲的两大块儿:线性优化和非线性优化问题。在非线性优化问题这里涉及到拉格朗日乘子法,经常要算一些非常变态的线性方程,于是我就想用python求解线性方程。查阅资料的过程中找到了一个极其简单的解决方式,也学到了不少东西。先把代码给出。
import numpy as np
# A = np.mat('1 2 3;2 -1 1;3 0 -1')
A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]])
b = np.array([9, 8, 3])
x = np.linalg.solve(A, b)
print(x)
是不是很简洁?因为调用了强大的包numpy~ 我们想解决的问题是求解矩阵方程$Ax=b$。在这里调用numpy中的线性代数包np.linalg,使用其中的function->solve(A, b)。几行代码就解决了问题。在这里solve函数有两个输入,第一个输入是矩阵,可以采用numpy里的矩阵数据类型或者最常用的数组数据类型。第二个输入是右端项b,一个一维numpy数组即可。函数返回方程的解,shape和b是相同的。如果矩阵A是奇异的或者不是方阵,函数就会报错。
好了,问题得到了绝佳的解决,大不了把python当计算器来用呗~
下面是补充知识:numpy中的matrix类
matrix类是numpy中的一个过时的类,可能会在未来被移除。因为现在大多数人都会用更加灵活好用的ndarray,移除它也是可以理解的。
>>> a = np.matrix('1 2; 3 4')
>>> a
matrix([[1, 2],
[3
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。