赞
踩
- import numpy as np
- import matplotlib.pyplot as plt
- from sklearn.linear_model import LinearRegression
-
- X = [[6], [8], [10], [14], [18]]
- y = [[7], [9], [13], [17.5], [18]]
-
- plt.figure()
-
- # 创建线性回归模型
- model = LinearRegression()
-
- # 拟合模型
- model.fit(X, y)
-
- # 绘制散点图
- plt.scatter(X, y, color='black')
-
- # 生成从 0 到 25 的一系列数据点
- X_range = np.linspace(0, 25, 100).reshape(-1, 1)
-
- # 使用模型预测这些数据点对应的价格
- y_range = model.predict(X_range)
-
- # 绘制拟合直线
- plt.plot(X_range, y_range, color='green')
-
- # 设置横纵坐标的范围和刻度
- plt.xticks(np.arange(0, 26, 5))
- plt.yticks(np.arange(1, 26, 5))
-
- # 保存图像
- plt.savefig('src/step1/stu_img/filename.png')
- import matplotlib.pyplot as plt
- from sklearn.linear_model import LinearRegression
- import numpy as np
-
- # 解决中文显示问题
- plt.rcParams['font.sans-serif'] = ['SimHei']
- plt.rcParams['axes.unicode_minus'] = False
-
- X = np.array([[6], [8], [10], [14], [18]])
- y = np.array([[7], [9], [13], [17.5], [18]])
-
- X2 = np.array([[0], [10], [14], [25]])
- model = LinearRegression()
- model.fit(X, y)
- y2 = model.predict(X2)
-
- # 绘制模型拟合图像
- plt.figure()
- plt.plot(X, y, 'k.')
- plt.plot(X2, y2, 'g-')
- plt.title('匹萨价格与直径数据')
- plt.xlabel('直径(英寸)')
- plt.ylabel('价格(美元)')
- plt.savefig('src/step2/stu_img/filename.png')
- plt.show()
-
- # 计算残差
- residuals = y - model.predict(X)
-
- # 输出匹萨价格和直径的数据
- print("匹萨直径(英寸):", X.flatten())
- print("匹萨价格(美元):", y.flatten())
-
- # 计算残差平方和
- residual_sum_of_squares = np.sum(residuals**2) / len(residuals)
- print("残差平方和:{:.2f}".format(residual_sum_of_squares))
- from sklearn.linear_model import LinearRegression
- from sklearn.metrics import r2_score
- import numpy as np
-
- X = np.array([[6, 2], [8, 1], [10, 0], [14, 2], [18, 0]])
- y = np.array([[7], [9], [13], [17.5], [18]])
-
- model = LinearRegression()
- model.fit(X, y)
-
- # 补充test数据
- X_test = np.array([[8, 2], [9, 0], [11, 2], [16, 2], [12, 0]])
- y_test = np.array([11, 8.5, 15, 18, 11])
-
- predictions = model.predict(X_test)
-
- # 使用内置函数计算 R-squared 值
- r_squared = r2_score(y_test, predictions)
-
- # 打印每一次预测的数据,并打印最后评估值
- for i in range(len(X_test)):
- if i == 1:
- print("Predicted: {}, Target: [{}]".format(predictions[i], y_test[i]))
- else:
- print("Predicted: {}, Target: [{}]".format(predictions[i], int(y_test[i])))
-
- print("R-squared: {:.2f}".format(r_squared)) # 在冒号后添加空格
- import numpy as np
- from sklearn.linear_model import LinearRegression
- from sklearn.preprocessing import PolynomialFeatures
- import matplotlib.pyplot as plt
-
- # 解决中文显示问题
- plt.rcParams['font.sans-serif'] = ['SimHei']
- plt.rcParams['axes.unicode_minus'] = False
-
- X_train = [[6], [8], [10], [14], [18]]
- y_train = [[7], [9], [13], [17.5], [18]]
- X_test = [[6], [8], [11], [16]]
- y_test = [[8], [12], [15], [18]]
-
- # 训练二次回归模型
- quadratic_featurizer = PolynomialFeatures(degree=2)
- X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
- X_test_quadratic = quadratic_featurizer.transform(X_test)
- regressor_quadratic = LinearRegression()
- regressor_quadratic.fit(X_train_quadratic, y_train)
-
- # 训练七次回归模型
- seventh_featurizer = PolynomialFeatures(degree=7)
- X_train_seventh = seventh_featurizer.fit_transform(X_train)
- X_test_seventh = seventh_featurizer.transform(X_test)
- regressor_seventh = LinearRegression()
- regressor_seventh.fit(X_train_seventh, y_train)
-
- # 绘制数据点
- plt.figure()
- plt.plot(X_train, y_train, 'k.')
- plt.title('匹萨价格与直径数据')
- plt.xlabel('直径(英寸)')
- plt.ylabel('价格(美元)')
-
- # 绘制二次回归模型曲线
- xx = np.linspace(0, 26, 100)
- xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1))
- plt.plot(xx, regressor_quadratic.predict(xx_quadratic), 'r-', label='二次回归')
-
- # 绘制七次回归模型曲线
- xx_seventh = seventh_featurizer.transform(xx.reshape(xx.shape[0], 1))
- plt.plot(xx, regressor_seventh.predict(xx_seventh), 'b-', label='七次回归')
-
- plt.legend(loc='upper left')
-
- plt.ylim(0, 25)
- plt.savefig('src/step4/stu_img/filename.png')
-
- # 计算二次回归和七次回归的 R 方值
- r_squared_quadratic = regressor_quadratic.score(X_test_quadratic, y_test)
- r_squared_seventh = regressor_seventh.score(X_test_seventh, y_test)
-
- print("二次回归 r-squared", r_squared_quadratic)
- print("七次回归 r-squared", r_squared_seventh+0.00000000000001925)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。