当前位置:   article > 正文

S3E:用于协作SLAM的大规模多模态数据集

多相机slam数据集

0. 引言

多机器人协作在搜索救援、工业自动化、智慧农业等领域发展迅猛,而协同SLAM(C-SLAM)是实现多机器人协作的核心技术。现有的EuRoc、KITTI等数据集虽然在单机SLAM领域发挥了重要作用,但却很难去评价多机协同的轨迹和建图精度。近日,中山大学团队开发了一种用于协作SLAM的大规模多模态数据集,由3个无人车沿四种轨迹采集,包含7个室外场景和5个室内场景。这是第一个使用各种室内和室外环境的激光雷达、视觉和惯性数据的C-SLAM数据集,研究机器人协作的小伙伴一定不要错过!

1. 论文信息

标题:S3E: A Large-scale Multimodal Dataset for Collaborative SLAM

作者:Dapeng Feng, Yuhua Qi, Shipeng Zhong, Zhiqiang Chen, Yudu Jiao, Qiming Chen, Tao Jiang, Hongbo Chen

原文链接:https://arxiv.org/abs/2210.13723

数据集链接:https://github.com/PengYu-Team/S3E

官方demo:https://www.bilibili.com/video/BV1Ze41137kx/?vd_source=78d041dc03a4aac231b5cac62feffc70

2. 摘要

随着使用一组机器人协作完成任务的要求越来越高,研究界对协作同步定位和地图绘制越来越感兴趣。不幸的是,现有的数据集在它们捕获的协作轨迹的规模和变化方面是有限的,尽管不同主体之间的交互轨迹的一般化对于协作任务的整体可行性是至关重要的。为了帮助将研究社区的贡献与现实世界的多主体协调SLAM问题结合起来,我们引入了S3E,这是一个由无人驾驶地面车辆车队沿着四个设计的协作轨迹范例捕获的新的大规模多模态数据集。S3E由7个室外和5个室内场景组成,每个场景都超过200秒,由同步和校准良好的高质量双目相机、激光雷达和高频IMU数据组成。至关重要的是,我们的努力在数据集大小、场景可变性和复杂性方面超过了以前的尝试。它的平均记录时间是开创性的EuRoC数据集的4倍。我们还提供仔细的数据集分析以及协作SLAM和单个对应方的基线。

3. 数据集介绍

3.1 数据采集车

如图1所示是用于采集S3E数据集的无人车,每个无人车上都有2个高分辨率彩色相机、1个16线激光雷达、1个9轴IMU以及1个双天线RTK。表1所示是无人车所使用传感器的具体参数。

9329fc991208cd32ede67eab339e4f2a.jpeg

图1 采集平台,三个遥控车辆分别名为Alpha, Bob以及Carol。

表1 传感器设备参数

6fb3ccbc9dc981db426a1aaa65cacc6b.png

无人车所使用的平台是Agilex Scout Mini,它是一款四轮驱动、最高车速10km/h的全地形高速遥控移动平台。在具体的数据采集过程中,作者使用Velodyne VLP-16 Puck来记录360°点云数据。使用两台HikRobot MV-CS050-10GC GigE相机采集双目视觉数据,其中双目相机的基线为360mm,图像通过全局快门扫描捕获,并从原始图像降采样到1224x1024。此外,还使用9轴Xsens MTi-30-2A8G4 IMU记录三个加速度计和三个陀螺仪。为了进行验证和测试,作者还使用Femtomes Nano-D RTK配备双天线在GNSS可用区域捕获轨迹真值,真值采集频率为1 Hz。无人车平台上所有传感器的安装位置如图2所示,采集到的S3E数据集样例如图3所示。

a7ef5c0b26429767dbcb001ec9de9e33.jpeg

图2 传感器布局和坐标系

1dd9b2dbdfb18b6af2ec18cde4d4ac34.jpeg

图3 S3E数据集的数据示例,每行都显示了不同平台同时捕捉到的双目图像和点云。

3.2 传感器同步

在多传感器融合中,时间同步和传感器校准至关重要。因此,作者在此方面也做了很多的工作。

(1) 时间同步:如图4所示,S3E的同步系统使用Altera EP4CE10板作为触发器,Intel NUC11TNKv7作为主机。对于不同机器人间的同步,作者把这个问题分成两种情况来讨论。首先,应用GNSS时间作为室外场景中的全局时间源来校准机器人的计时器。之后,在无GNSS系统中(室内场景),所有机器人运行时间校准程序,通过无线网络从PTP服务器获取外部全局时间数据。

对于内部同步,触发单元周期性地产生脉冲来触发激光雷达、双目摄像机和IMU。值得注意的是,FPGA产生1 Hz脉冲来触发激光雷达,然后激光雷达返回10 Hz数据,并在接收到触发信号后刷新内部计数器寄存器。摄像机和IMU在收到触发脉冲后立即返回数据。

(2) 传感器校准:在图2所示的传感器布局中,所有的坐标系都遵循右手定则。作者使用标准棋盘校准来运行相机的内部校准。对于激光雷达和IMU,由厂家进行内部传感器校准。之后进行双目相机联合标定和激光雷达-相机联合标定。此外,在利用Allan标准差对IMU噪声建模后,作者还进行了相机和IMU的联合标定。

a37d78c01094b573585c8775aad9815c.jpeg

图4 基于FPGA的同步系统架构

3.3 轨迹范例

如图5所示,在S3E数据集中,作者设计了遵循四种不同的机器人内/机器人间规范的闭环轨迹。

第一种轨迹是C-SLAM应用中的典型情况,即机器人编队同时绕目标运行,主要用于对目标进行稠密三维重建。第二个轨迹模拟区域搜索和救援任务,每个机器人在不同的区域搜索,并在交互过程中与其他机器人共享信息。这种情况要求C-SLAM算法在小的公共区域内具有可靠的机器人内部闭环能力和高效的机器人之间闭环能力。第三条轨迹集中于仅具有机器人间环路闭合的场景,所有的机器人都从不同的地方开始,并在路径中的一些会合点前进,最后在同一个地方相遇。第四条轨迹中,机器人从不同的地方开始,终点是同一个地点。这种情况在C-SLAM中非常困难,因为所有的机器人只在终点相遇,几乎没有为回环提供任何信息。

图6显示了室外环境中S3E数据集的轨迹,它包含校园内五个有代表性的功能区域,即广场、图书馆、学院、操场和宿舍。

ada2dc81f88f1b47f29a8c123a16d388.jpeg

图5 四种轨迹范例

4731b01243c155fef31ee2232bb705ae.jpeg

图6 S3E数据集的室外轨迹,Alpha、Bob和Carol在室外环境中的轨迹用橙色、紫色和青色标注。

S3E数据集的室外和室内分布情况如表2所示,与其他主流SLAM数据集的对比如表3所示。S3E数据集的平均时间为459.1s,这对解决C-SLAM的长期评估问题具有较大帮助。值得注意的是,对于每个设计的轨迹,该数据集至少包含一个序列。此外,Dormitory为第三类和第四类的混合轨迹,Laboratory_1为第二类和第四类的混合轨迹。

表2 S3E数据集分析

0a7706c57b4c2a7c355ba6b11b8201df.png

表3 与一些流行的SLAM数据集的对比

1111c81487c3f0fe857fc683865d4db0.png

4. 实验

4.1 基线

如表4所示,作者在S3E数据集上提供了四个单机器人SLAM和三个C-SLAM基线,评价指标为ATE,均是目前的主流SLAM算法。其中前者包括ORB-SLAM3、VINS-Fusion、LIO-SAM以及LVI-SAM。后者包括COVINS、DiSCo-SLAM以及DCL-SLAM。

作者采用了三种方法来生成轨迹真值:在GNSS可用区域,由双天线RTK设备记录的厘米级定位真值。对于无GNSS的场景,用RTK设备记录建筑物外轨道的起点和终点。并利用运动捕捉设备来记录室内情况下的起点和终点。

表4 室外环境下单SLAM和C-SLAM的基准ATE。α、β和γ分别代表ALPHA、BOB和CAROL

65c4004d8314031df50a44e1a9f621db.png

4.2 结果对比

对于单机器人SLAM,基于激光雷达的方法通常优于基于视觉的方法。在S3E中,大多数基于视觉的方法在转弯时无法跟踪帧,因此,基于LiDAR的C-SLAM超过了基于视觉的C-SLAM。同时,C-SLAM在成功检测到回环时,可以状态估计的鲁棒性和准确性。例如DCL-SLAM相比其前端LIO-SAM,平均ATE降低了0.42。在Playground_1序列中,部署单LIO-SAM时,同心圆Alpha和Bob均无法跟踪帧,单通过DCL-SLAM可以成功跟踪,并且精度实现了大幅提升。在Square_1中,COVINS以7.09的ATE超过了单SLAM,Carol在ORB-SLAM3失败时通过协作实现了1.75 ATE。

如图7所示,红色圆圈表示C-SLAM成功检测到回环。在左侧,DiSCo-SLAM和DCL-SLAM在简单的情况下取得成功,因为不同观测之间的大量重叠保证了后端优化的冗余特性。与DCL-SLAM相比,COVINS在两个机器人同向移动的端点处成功检测到不同机器人之间的回环,但在两个机器人相对移动的中点处未能匹配到Bob和Carol之间的特征。这也是DCL-SLAM优于COVINS的原因之一。结果表明,先进的C-SLAM系统可以在具有相当大重叠度的轨迹间表现良好。

49acabd7d17d5f6319257184365c3df7.png

图7 C-SLAM的定性结果

5. 结论

近期,中山大学开发了一种由三个无人车记录的大规模C-SLAM数据集,它包含激光雷达-视觉-IMU数据。S3E数据集包含7个室外场景和5个室内场景,并进行了时间同步和传感器校准。此外,S3E数据集中包含了多个回环检测,并评估了当前最先进的C-SLAM及其单机器人前端比较器的性能。多机协同是机器人领域的一个重要发展趋势,而目前多机数据集还较少,S3E很大程度上填补了这方面的空白。

本文仅做学术分享,如有侵权,请联系删文。

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的多传感器数据融合技术

2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

9.从零搭建一套结构光3D重建系统[理论+源码+实践]

10.单目深度估计方法:算法梳理与代码实现

11.自动驾驶中的深度学习模型部署实战

12.相机模型与标定(单目+双目+鱼眼)

13.重磅!四旋翼飞行器:算法与实战

14.ROS2从入门到精通:理论与实战

15.国内首个3D缺陷检测教程:理论、源码与实战

16.基于Open3D的点云处理入门与实战教程

17.透彻理解视觉ORB-SLAM3:理论基础+代码解析+算法改进

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

be5f161089e49db0879b492ad8ae4ce2.jpeg

▲长按加微信群或投稿,加微信:dddvision

153f7393935316d47c5ce06fba87aab6.jpeg

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列三维点云系列结构光系列手眼标定相机标定激光/视觉SLAM自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近6000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

c39cf01f118a089ac45b21cace0a43c8.jpeg

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/711029
推荐阅读
相关标签
  

闽ICP备14008679号