赞
踩
pytorch从零实现resnet_pytorch实现resnet_两只蜡笔的小新的博客-CSDN博客
前言:
之前博主写过一个ResNet34, ResNet18的实现方法,对于ResNet50的实现方法有点不太一样,之前的实现方法参考上面的链接。下面介绍ResNet50的实现方法。
基本结构示意图
发现ResNet50,其基本模块是三个,1*1 3*3 1*1 的卷积层,在向前推进的时候,需要特征图的通道数降维,所以与ResNet34不同的地方是BasicBlock,和make_layer
- class Bottleneck(nn.Module):
- expansion: int = 4
- def __init__(
- self,
- inplanes: int,
- planes: int,
- stride: int = 1,
- downsample = None,
- base_width: int = 64,
- dilation: int = 1,
- norm_layer = None
- ) -> None:
- super(Bottleneck, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- width = int(planes * (base_width / 64.))
- # Both self.conv2 and self.downsample layers downsample the input when stride != 1
- self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, stride=1, bias=False)
- self.bn1 = norm_layer(width)
- self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
- padding=dilation, bias=False, dilation=dilation)
- self.bn2 = norm_layer(width)
- self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, stride=1, bias=False)
- self.bn3 = norm_layer(planes * self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample is not None:
- identity = self.downsample(x)
-
- out += identity
- out = self.relu(out)
-
- return out
由于renset残差单元可能连接两个不同维度的特征图,所以要接一个降采样操作self.downsample = shortcut,有没有取决于输入维度与输出维度是否相同,还取决于特征图的尺寸是否发生变化。
- def _make_layer(self, block, planes: int, blocks: int,
- stride: int = 1):
- norm_layer = self._norm_layer
- downsample = None
- previous_dilation = self.dilation
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
- norm_layer(planes * block.expansion),)
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample,
- self.base_width, previous_dilation, norm_layer))
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(block(self.inplanes, planes,
- base_width=self.base_width, dilation=self.dilation,
- norm_layer=norm_layer))
- return nn.Sequential(*layers)
- class ResNet50_src(nn.Module):
- def __init__(self,block = Bottleneck,
- layers = [3, 4, 6, 3],
- num_classes: int = 1000,
- width_per_group: int = 64,
- norm_layer = None
- ):
- super(ResNet50_src, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- self._norm_layer = norm_layer
-
- self.inplanes = 64
- self.dilation = 1
- self.base_width = width_per_group
- self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
- bias=False)
- self.bn1 = norm_layer(self.inplanes)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- self.fc = nn.Linear(512 * block.expansion, num_classes)
-
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
-
-
- def _make_layer(self, block, planes: int, blocks: int,
- stride: int = 1):
- norm_layer = self._norm_layer
- downsample = None
- previous_dilation = self.dilation
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
- norm_layer(planes * block.expansion),)
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample,
- self.base_width, previous_dilation, norm_layer))
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(block(self.inplanes, planes,
- base_width=self.base_width, dilation=self.dilation,
- norm_layer=norm_layer))
- return nn.Sequential(*layers)
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- x = self.avgpool(x)
- x = torch.flatten(x, 1)
- x = self.fc(x)
- return x
运行对比测试
- if __name__ == '__main__':
- from torchsummary import summary
- from torchvision import models
-
- resnet = models.resnet50(pretrained=False)
- summary(ResNet50_src().cuda(),(3,512,512))
- # summary(resnet.cuda(),(3,512,512))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。