赞
踩
回归预测 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多输入单输出回归预测
MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多输入单输出回归预测(Matlab完整程序和数据)
输入7个特征,输出1个,即多输入单输出;优化参数为学习率,批大小,正则化系数。
运行环境Matlab2018及以上,运行主程序main即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;
命令窗口输出RMSE、MAE、R2、MAPE。
%% 记录最佳参数 Best_pos(1, 2) = round(Best_pos(1, 2)); best_lr = Best_pos(1, 1); best_hd = Best_pos(1, 2); best_l2 = Best_pos(1, 3); %% 建立模型 % ---------------------- 修改模型结构时需对应修改fical.m中的模型结构 -------------------------- layers = [ sequenceInputLayer(f_) % 输入层 fullyConnectedLayer(outdim) % 输出回归层 regressionLayer]; %% 参数设置 % ---------------------- 修改模型参数时需对应修改fical.m中的模型参数 -------------------------- options = trainingOptions('adam', ... % Adam 梯度下降算法 'MaxEpochs', 500, ... % 最大训练次数 500 'InitialLearnRate', best_lr, ... % 初始学习率 best_lr 'LearnRateSchedule', 'piecewise', ... % 学习率下降 'LearnRateDropFactor', 0.5, ... % 学习率下降因子 0.1 'LearnRateDropPeriod', 400, ... % 经过 400 次训练后 学习率为 best_lr * 0.5 'Shuffle', 'every-epoch', ... % 每次训练打乱数据集 'ValidationPatience', Inf, ... % 关闭验证 'L2Regularization', best_l2, ... % 正则化参数 'Plots', 'training-progress', ... % 画出曲线 'Verbose', false); %% 训练模型 net = trainNetwork(p_train, t_train, layers, options); %% 仿真验证 t_sim1 = predict(net, p_train); t_sim2 = predict(net, p_test ); %% 数据反归一化 T_sim1 = mapminmax('reverse', t_sim1, ps_output); T_sim2 = mapminmax('reverse', t_sim2, ps_output); T_sim1=double(T_sim1); T_sim2=double(T_sim2); %% 均方根误差 error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M); error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N); %_________________________________________________________________________% % The Whale Optimization Algorithm function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj) % initialize position vector and score for the leader Best_pos=zeros(1,dim); Best_Cost=inf; %change this to -inf for maximization problems %Initialize the positions of search agents Positions=initialization(pop,dim,ub,lb); curve=zeros(1,Max_iter); t=0;% Loop counter % Main loop while t<Max_iter for i=1:size(Positions,1) % Return back the search agents that go beyond the boundaries of the search space Flag4ub=Positions(i,:)>ub; Flag4lb=Positions(i,:)<lb; Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % Calculate objective function for each search agent fitness=fobj(Positions(i,:)); % Update the leader if fitness<Best_Cost % Change this to > for maximization problem Best_Cost=fitness; % Update alpha Best_pos=Positions(i,:); end end a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3) % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12) a2=-1+t*((-1)/Max_iter); % Update the Position of search agents for i=1:size(Positions,1) r1=rand(); % r1 is a random number in [0,1] r2=rand(); % r2 is a random number in [0,1] A=2*a*r1-a; % Eq. (2.3) in the paper C=2*r2; % Eq. (2.4) in the paper b=1; % parameters in Eq. (2.5) l=(a2-1)*rand+1; % parameters in Eq. (2.5) p = rand(); % p in Eq. (2.6) for j=1:size(Positions,2) if p<0.5 if abs(A)>=1 rand_leader_index = floor(pop*rand()+1); X_rand = Positions(rand_leader_index, :); D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7) Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8) elseif abs(A)<1 D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1) Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2) end elseif p>=0.5 distance2Leader=abs(Best_pos(j)-Positions(i,j)); % Eq. (2.5) Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j); end end end t=t+1; curve(t)=Best_Cost; [t Best_Cost] end
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。