当前位置:   article > 正文

霹雳吧啦Wz语义分割学习笔记P11_语义分割 热力图

语义分割 热力图

P11.U-Net网络结构讲解

U-Net:Convolutional Networks for Biomedical Image Segmentation MICCAI 2015

生物医学影像

https://arxiv.org/abs/1505.04597

encoder:左边,特征提取下采样 contracting path

decoder:右边,通过一系列上采样得到最后的分割图 expansive path

输入为572x572的单通道图片,通过3x3的卷积层(stride=1,padding=0,所以通过卷积层后高和宽都减小)和relu激活函数

通过下采样(maxpooling2x2,stride=2,高和宽减半,channel不变),再经过3x3的卷积层和relu激活函数(每次下采样之后经过的卷积层都会将channel翻倍)

......

上采样(转置卷积,将特征层的高和宽都放大两倍,channel减半)

将64x64的特征层进行中心裁剪变成56x56,与右边56x56的特征层进行拼接,channel=1024

再通过卷积层将channel=512

上采样......

通过1x1的卷积层(没有relu激活函数),卷积核个数与分类的类别个数相同(前景+背景=2)

输入图片的大小为572x572,得到的分割图大小为388x388,不是针对原图的分割图,而是只有中间388x388区域的分割图

现在主流的实验方式:在卷积操作中加上padding(不会改变特征层的高和宽),在卷积层和relu激活函数中加上BN模块,得到的分割图大小与输入图片大小相同

 

高分辨率图片的分割方法

每次只分割一小块

 相邻的两个区域之间一般会有重叠的部分,为了更好地分割边界区域的信息

 

 

 a 分割原图的灰度图

b 人工标注的实例分割的标签数据

c 语义分割

d 热力图,训练时针对ground truth每一个像素的权重,细胞间的背景区域施加更大的权重,大片的背景区域施加较小的权重

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/760838
推荐阅读
相关标签
  

闽ICP备14008679号