赞
踩
14天学习训练营导师课程: 郑为中《Vue和SpringBoot打造假日旅社管理系统》
努力是为了不平庸~
学习有些时候是枯燥的,但收获的快乐是加倍的,欢迎记录下你的那些努力时刻(学习知识点/题解/项目实操/遇到的bug/等等),在分享的同时加深对于知识点的理解,同时吸收他人的奇思妙想,一起见证技术er的成长~
看到项目中使用了Redis,那么就随着训练的脚步来学习一下。
1.读写分离
2.Memcached(缓存)+MYSQL+垂直拆分
网站80%的情况都是在读,每次都要去查询数据库的话就非常麻烦,希望可以减轻数据的压力,所以可以使用缓存来保证效率!
发展过程:优化数据结构和索引–》文件缓存(IO)–》Memcached
3.分库分表+水平拆分+mysql集群
本质:数据库(读、写)
MyISAM:表锁,十分影响效率,高并发下就回出现严重的锁问题
Innodb:行锁
慢慢的就开始分库分表来解决写的压力。
随后出现MySQL的集群
4.如今
mysql等关系型数据库就不够用了。因为数据量很多,变化很快。
MySQL有的使用它来存储一些比较大的文件,例如图片等,导致数据库表很大,效率就很低,如果有一种数据库来专门处理这种数据。
研究如何使mysql压力变小。大数据的IO压力下,表几乎无法更大。
目前一个基本的互联网项目
为什么要用NoSql
用户的个人信息,社交网络,地理位置。用户自己产生的数据,用户日志等等爆发式增长。
这时候就需要用Nosql来解决上述问题。
NoSQL(Not Only SQL
),意即不仅仅是SQL, 泛指非关系型的数据库。Nosql这个技术门类,早期就有人提出,发展至2009年趋势越发高涨。
随着互联网网站的兴起,传统的关系数据库在应付动态网站,特别是超大规模和高并发的纯动态网站已经显得力不从心,暴露了很多难以克服的问题。如商城网站中对商品数据频繁查询
、对热搜商品的排行统计
、订单超时问题
、以及微信朋友圈(音频,视频)存储等相关使用传统的关系型数据库实现就显得非常复杂,虽然能实现相应功能但是在性能上却不是那么乐观。nosql这个技术门类的出现,更好的解决了这些问题,它告诉了世界不仅仅是sql。
方便扩展(数据之间没有关系,很好扩展!)
大数据量高性能(Redis一秒可以写8万次,读11万次,NoSQL的缓存记录级,是一种细粒度的缓存,性能会比较高!)
数据类型是多样型的!(不需要事先设计数据库,随取随用)
传统的 RDBMS 和 NoSQL
传统的 RDBMS(关系型数据库)
- 结构化组织
- SQL
- 数据和关系都存在单独的表中 row col
- 操作,数据定义语言
- 严格的一致性
- 基础的事务
- ...
Nosql
- 不仅仅是数据
- 没有固定的查询语言
- 键值对存储,列存储,文档存储,图形数据库(社交关系)
- 最终一致性
- CAP定理和BASE
- 高性能,高可用,高扩展
- ...
了解:3V + 3高
大数据时代的3V :主要是描述问题的
大数据时代的3高 : 主要是对程序的要求
真正在公司中的实践:NoSQL + RDBMS 一起使用才是最强的。
可以读一下:阿里云的这群疯子 https://yq.aliyun.com/articles/653511
读完的感受可以来聊聊
# 商品信息 - 一般存放在关系型数据库:Mysql,阿里巴巴使用的Mysql都是经过内部改动的。 # 商品描述、评论(文字居多) - 文档型数据库:MongoDB # 图片 - 分布式文件系统 FastDFS - 淘宝:TFS - Google: GFS - Hadoop: HDFS - 阿里云: oss # 商品关键字 用于搜索 - 搜索引擎:solr,elasticsearch - 阿里:Isearch 多隆 # 商品热门的波段信息 - 内存数据库:Redis,Memcache、tair # 商品交易,外部支付接口 - 第三方应用
1.说明:
2.特点
3.相关产品
1.说明
2.特点
3.相关产品
1.说明
2.特点
3.相关产品
MongoDB(掌握)
基于分布式文件存储的数据库。C++编写,用于处理大量文档。
MongoDB是RDBMS和NoSQL的中间产品。MongoDB是非关系型数据库中功能最丰富的,NoSQL中最像关系型数据库的数据库。
1.说明
2.特点
3.相关产品
分类 | Examples举例 | 典型应用场景 | 数据模型 | 优点 | 缺点 |
---|---|---|---|---|---|
键值对(key-value) | Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB | 内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等等。 | Key 指向 Value 的键值对,通常用hash table来实现 | 查找速度快 | 数据无结构化,通常只被当作字符串或者二进制数据 |
列存储数据库 | Cassandra, HBase, Riak | 分布式的文件系统 | 以列簇式存储,将同一列数据存在一起 | 查找速度快,可扩展性强,更容易进行分布式扩展 | 功能相对局限 |
文档型数据库 | CouchDB, MongoDb | Web应用(与Key-Value类似,Value是结构化的,不同的是数据库能够了解Value的内容) | Key-Value对应的键值对,Value为结构化数据 | 数据结构要求不严格,表结构可变,不需要像关系型数据库一样需要预先定义表结构 | 查询性能不高,而且缺乏统一的查询语法。 |
图形(Graph)数据库 | Neo4J, InfoGrid, Infinite Graph | 社交网络,推荐系统等。专注于构建关系图谱 | 图结构 | 利用图结构相关算法。比如最短路径寻址,N度关系查找等 | 很多时候需要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群 |
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。