当前位置:   article > 正文

使用Ollama和OpenWebUI,轻松探索Meta Llama3–8B_llama3.1 docker

llama3.1 docker

大家好,2024年4月,Meta公司开源了Llama 3 AI模型,迅速在AI社区引起轰动。紧接着,Ollama工具宣布支持Llama 3,为本地部署大型模型提供了极大的便利。

本文将介绍如何利用Ollama工具,实现Llama 3–8B模型的本地部署与应用,以及通过Open WebUI进行模型交互的方法。

1.安装Ollama

使用“curl | sh”,可以一键下载并安装到本地:

  1. $curl -fsSL https://ollama.com/install.sh | sh
  2. >>> Downloading ollama...
  3. ######################################################################## 100.0%
  4. >>> Installing ollama to /usr/local/bin...
  5. >>> Creating ollama user...
  6. >>> Adding ollama user to video group...
  7. >>> Adding current user to ollama group...
  8. >>> Creating ollama systemd service...
  9. >>> Enabling and starting ollama service...
  10. Created symlink from /etc/systemd/system/default.target.wants/ollama.service to /etc/systemd/system/ollama.service.
  11. >>> The Ollama API is now available at 127.0.0.1:11434.
  12. >>> Install complete. Run "ollama" from the command line.
  13. WARNING: No NVIDIA/AMD GPU detected. Ollama will run in CPU-only mode.

可以看到,下载后Ollama启动了一个ollama系统服务。这项服务是Ollama的核心API服务,并且它驻留在内存中。通过systemctl确认服务的运行状态:

  1. $systemctl status ollama
  2. ● ollama.service - Ollama Service
  3.    Loaded: loaded (/etc/systemd/system/ollama.service; enabled; vendor preset: disabled)
  4.    Active: active (running) since 一 2024-04-22 17:51:18 CST; 11h ago
  5.  Main PID: 9576 (ollama)
  6.     Tasks: 22
  7.    Memory: 463.5M
  8.    CGroup: /system.slice/ollama.service
  9.            └─9576 /usr/local/bin/ollama serve

另外,这里对Ollama的systemd单元文件做了一些修改。修改了Environment的值,并添加了“OLLAMA_HOST=0.0.0.0”,以便在容器中运行的OpenWebUI能够访问Ollama API服务:

  1. # cat /etc/systemd/system/ollama.service
  2. [Unit]
  3. Description=Ollama Service
  4. After=network-online.target
  5. [Service]
  6. ExecStart=/usr/local/bin/ollama serve
  7. User=ollama
  8. Group=ollama
  9. Restart=always
  10. RestartSec=3
  11. Environment="PATH=/root/.cargo/bin:/usr/local/cmake/bin:/usr/local/bin:.:/root/.bin/go1.21.4/bin:/root/go/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin" "OLLAMA_HOST=0.0.0.0"
  12. [Install]
  13. WantedBy=default.target

修改后,执行以下命令使其生效:

  1. $systemctl daemon-reload
  2. $systemctl restart ollama

2.下载并运行大模型

Ollama支持一键下载和运行模型。

这里用的是一台16/32GB的云虚拟机,但没有GPU。所以使用的是经过聊天/对话微调的Llama3-8B指令模型。只需使用以下命令快速下载并运行模型(4位量化):

  1. $ollama run llama3
  2. pulling manifest
  3. pulling 00e1317cbf74...   0% ▕                ▏    0 B/4.7 GB                 
  4. pulling 00e1317cbf74...   7% ▕█               ▏ 331 MB/4.7 GB   34 MB/s    2m3s^C
  5. pulling manifest
  6. pulling manifest
  7. pulling manifest
  8. pulling manifest
  9. pulling 00e1317cbf74...  61% ▕█████████       ▏ 2.8 GB/4.7 GB   21 MB/s   1m23s^C
  10. ... ...

下载和执行成功后,命令行将等待你的问题输入。我们可以随意输入一个关于Go的问题。以下是输出结果:

  1. $ollama run llama3
  2. >>> could you tell me something about golang language?
  3. Go!
  4. Here are some interesting facts and features about the Go programming language:
  5. **What is Go?**
  6. Go, also known as Golang, is a statically typed, compiled, and designed to be concurrent and garbage-collected language. It
  7. was developed by Google in 2009.
  8. **Key Features:**
  9. 1. **Concurrency**: Go has built-in concurrency support through goroutines (lightweight threads) and channels (communication
  10. mechanisms). This makes it easy to write concurrent programs.
  11. 2. **Garbage Collection**: Go has a automatic garbage collector, which frees developers from worrying about memory
  12. management.
  13. 3. **Static Typing**: Go is statically typed, meaning that the type system checks the types of variables at compile time,
  14. preventing type-related errors at runtime.
  15. 4. **Simple Syntax**: Go's syntax is designed to be simple and easy to read. It has a minimalistic approach to programming
  16. language design.
  17. ... ...

推理速度大约是每秒5到6个token,这个速度是可以接受的,但这个过程对CPU资源的消耗相当大:

图片

除了可以通过命令行与Ollama API服务交互外,还可以使用Ollama的RESTful API:

  1. $curl http://localhost:11434/api/generate -d '{
  2. >   "model": "llama3",
  3. >   "prompt":"Why is the sky blue?"
  4. > }'
  5. {"model":"llama3","created_at":"2024-04-22T07:02:36.394785618Z","response":"The","done":false}
  6. {"model":"llama3","created_at":"2024-04-22T07:02:36.564938841Z","response":" color","done":false}
  7. {"model":"llama3","created_at":"2024-04-22T07:02:36.745215652Z","response":" of","done":false}
  8. {"model":"llama3","created_at":"2024-04-22T07:02:36.926111842Z","response":" the","done":false}
  9. {"model":"llama3","created_at":"2024-04-22T07:02:37.107460031Z","response":" sky","done":false}
  10. {"model":"llama3","created_at":"2024-04-22T07:02:37.287201658Z","response":" can","done":false}
  11. {"model":"llama3","created_at":"2024-04-22T07:02:37.468517901Z","response":" vary","done":false}
  12. {"model":"llama3","created_at":"2024-04-22T07:02:37.649011829Z","response":" depending","done":false}
  13. {"model":"llama3","created_at":"2024-04-22T07:02:37.789353456Z","response":" on","done":false}
  14. {"model":"llama3","created_at":"2024-04-22T07:02:37.969236546Z","response":" the","done":false}
  15. {"model":"llama3","created_at":"2024-04-22T07:02:38.15172159Z","response":" time","done":false}
  16. {"model":"llama3","created_at":"2024-04-22T07:02:38.333323271Z","response":" of","done":false}
  17. {"model":"llama3","created_at":"2024-04-22T07:02:38.514564929Z","response":" day","done":false}
  18. {"model":"llama3","created_at":"2024-04-22T07:02:38.693824676Z","response":",","done":false}
  19. ... ...

此外,可以在日常生活中使用大型模型的方式还有通过Web UI进行交互,有许多Web和桌面项目支持Ollama API。在这里选择了Open WebUI,它是从Ollama WebUI发展而来的。

3.使用Open WebUI与大模型交互

体验Open WebUI最快的方式当然是使用容器安装,但是官方镜像站点ghcr.io/open-webui/open-webui:main下载速度太慢,这里在Docker Hub上找到了一个个人镜像。以下是在本地安装Open WebUI的命令:

$docker run -d -p 13000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data -e OLLAMA_BASE_URL=http://host.docker.internal:11434  --name open-webui --restart always dyrnq/open-webui:main

容器启动后,通过访问主机上的13000端口来打开Open WebUI页面:

图片

Open WebUI会把第一个注册的用户视为管理员用户。注册并登录后,进入首页,在选择模型后,可以输入问题并与由Ollama部署的Llama3模型进行对话:

图片

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/897008
推荐阅读
相关标签
  

闽ICP备14008679号