赞
踩
Gradio 是一个用于快速构建机器学习模型界面的 Python 库,使用 Gradio 内置的共享功能,您可以在几秒钟内分享您的演示或网络应用程序链接,无需任何 JavaScript、CSS 或网页托管经验!下面进行演示,让我们编写第一个 Gradio 应用程序:
# pip install gradio
import gradio as gr
def greet(name, intensity):
return "Hello, " + name + "!" * int(intensity)
demo = gr.Interface(
fn=greet,
inputs=["text", "slider"],
outputs=["text"],
)
demo.launch()
你可以将上述代码放入以文件运行( python app.py ),下面的演示将在 http://localhost:7860 上的浏览器中打开。如果您在笔记本中运行,则演示将嵌入在笔记本中。在左侧的文本框中键入您的姓名,拖动滑块,然后按“提交”按钮,就会在右侧看到问候语。
另外,在本地开发时,您可以在在命令行中输入gradio app.py
来启动热重载模式( hot reload mode
)以运行 Gradio 应用程序。这意味着当你在本地编辑app.py
文件时,Gradio会自动重新加载修改后的应用程序,而不需要手动停止和启动它,这一便利特性,可以让开发者更快地迭代和测试他们的应用。更多内容,详见《Hot Reloading Guide》。
只需在 launch()
中 设置 share=True
,即可为您的演示创建一个可公开访问的 URL,让您轻松共享机器学习演示,而不必担心在 Web 服务器上托管的麻烦。
import gradio as gr
def greet(name):
return "Hello " + name + "!"
demo = gr.Interface(fn=greet, inputs="textbox", outputs="textbox")
demo.launch(share=True) # Share your demo with just 1 extra parameter 声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。