当前位置:   article > 正文

mid360配置lio-sam、point-lio和faster-lio(faster-lio未敢配置)_faster-lio mid360

faster-lio mid360

一、使用mid360配置lio-sam

1.首先从GitHub - nkymzsy/LIO-SAM-MID360 at Livox-ros-driver2 下载能支持mid360的lio-sam版本到 ws_livox/src中,直接编译,就可以成功。

2.使用

roslaunch lio_sam run6axis.launch

以及播之前我才记得Mid360的包,就可以到结果。

最终可以重建出来了三维场景,但是在重建过程中,一卡一卡的,不知道是啥问题。

二、point-lio

下载并编译point-lio

  1. cd src
  2. git clone https://github.com/hku-mars/Point-LIO.git
  3. cd ..
  4. catkin_make

  src/config 文件夹下添加的 mid360.yaml 文件配置:

  1. common:
  2. lid_topic: "/livox/lidar"
  3. imu_topic: "/livox/imu"
  4. con_frame: false # true: if you need to combine several LiDAR frames into one
  5. con_frame_num: 1 # the number of frames combined
  6. cut_frame: false # true: if you need to cut one LiDAR frame into several subframes
  7. cut_frame_time_interval: 0.1 # should be integral fraction of 1 / LiDAR frequency
  8. time_lag_imu_to_lidar: 0.0 # Time offset between LiDAR and IMU calibrated by other algorithms, e.g., LI-Init (find in Readme)
  9. # the timesample of IMU is transferred from the current timeline to LiDAR's timeline by subtracting this value
  10. preprocess:
  11. lidar_type: 1
  12. scan_line: 4
  13. timestamp_unit: 1 # the unit of time/t field in the PointCloud2 rostopic: 0-second, 1-milisecond, 2-microsecond, 3-nanosecond.
  14. blind: 0.5
  15. mapping:
  16. imu_en: true
  17. start_in_aggressive_motion: false # if true, a preknown gravity should be provided in following gravity_init
  18. extrinsic_est_en: false # for aggressive motion, set this variable false
  19. imu_time_inte: 0.005 # = 1 / frequency of IMU
  20. satu_acc: 3.0 # the saturation value of IMU's acceleration. not related to the units
  21. satu_gyro: 35 # the saturation value of IMU's angular velocity. not related to the units
  22. acc_norm: 1.0 # 1.0 for g as unit, 9.81 for m/s^2 as unit of the IMU's acceleration
  23. lidar_meas_cov: 0.001 # 0.001; 0.01
  24. acc_cov_output: 500
  25. gyr_cov_output: 1000
  26. b_acc_cov: 0.0001
  27. b_gyr_cov: 0.0001
  28. imu_meas_acc_cov: 0.1 #0.1 # 0.1
  29. imu_meas_omg_cov: 0.1 #0.01 # 0.1
  30. gyr_cov_input: 0.01 # for IMU as input model
  31. acc_cov_input: 0.1 # for IMU as input model
  32. plane_thr: 0.1 # 0.05, the threshold for plane criteria, the smaller, the flatter a plane
  33. match_s: 81
  34. fov_degree: 360
  35. det_range: 100
  36. gravity_align: true # true to align the z axis of world frame with the direction of gravity, and the gravity direction should be specified below
  37. gravity: [0.0, 0.0, -9.810] # [0.0, 9.810, 0.0] # gravity to be aligned
  38. gravity_init: [0.0, 0.0, -9.810] # [0.0, 9.810, 0.0] # # preknown gravity in the first IMU body frame, use when imu_en is false or start from a non-stationary state
  39. extrinsic_T: [ -0.011, -0.02329, 0.04412 ]
  40. extrinsic_R: [ 1, 0, 0,
  41. 0, 1, 0,
  42. 0, 0, 1 ]
  43. odometry:
  44. publish_odometry_without_downsample: false
  45. publish:
  46. path_en: true # false: close the path output
  47. scan_publish_en: true # false: close all the point cloud output
  48. scan_bodyframe_pub_en: false # true: output the point cloud scans in IMU-body-frame
  49. pcd_save:
  50. pcd_save_en: false
  51. interval: -1 # how many LiDAR frames saved in each pcd file;
  52. # -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames.

 src/launch 文件夹下添加 mapping_mid360.launch 文件: 

  1. <launch>
  2. <!-- Launch file for Livox AVIA LiDAR -->
  3. <arg name="rviz" default="true" />
  4. <node pkg="point_lio" type="pointlio_mapping" name="laserMapping" output="screen">
  5. <rosparam command="load" file="$(find point_lio)/config/mid360.yaml" />
  6. <param name="use_imu_as_input" type="bool" value="1"/> <!--change to 1 to use IMU as input of Point-LIO-->
  7. <param name="prop_at_freq_of_imu" type="bool" value="1"/>
  8. <param name="check_satu" type="bool" value="1"/>
  9. <param name="init_map_size" type="int" value="10"/>
  10. <param name="point_filter_num" type="int" value="1"/> <!--4, 3-->
  11. <param name="space_down_sample" type="bool" value="1" />
  12. <param name="filter_size_surf" type="double" value="0.3" /> <!--0.5, 0.3, 0.2, 0.15, 0.1-->
  13. <param name="filter_size_map" type="double" value="0.2" /> <!--0.5, 0.3, 0.15, 0.1-->
  14. <param name="cube_side_length" type="double" value="2000" /> <!--1000-->
  15. <param name="runtime_pos_log_enable" type="bool" value="0" /> <!--1-->
  16. </node>
  17. <group if="$(arg rviz)">
  18. <node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz" args="-d $(find point_lio)/rviz_cfg/loam_livox.rviz" />
  19. </group>
  20. launch-prefix="gdb -ex run --args"
  21. </launch>

最后用mid360采集的数据集,得到重建的结果:

三、faster-lio

Ubuntu18.04 Faster_lio 环境搭建与运行全过程记录_在ubuntu18.04上安装以及运行faster-lio-CSDN博客

由于要把gcc升级到版本9,害怕升级后原有的代码会出现错误,因此暂时这个先不做实验了。也先不安装和配置了。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/903843
推荐阅读
相关标签
  

闽ICP备14008679号