赞
踩
AlexNet是一个经典的卷积神经网络模型,由Alex Krizhevsky等人在2012年提出。ImageNet ISVRC是计算机视觉领域里一个十分重要的比赛,AlexNet是2012年ISLVRC 2012竞赛的冠军,分类准确率由传统的70%+提升到80%+。也是在那年之后,深度学习开始迅速发展。
ISLVRC 2012
训练集:1,281,167张已标注图片
验证集:50,000张已标注图片
测试集:100,000张未标注图片
AlexNet共有8层网络结构,第1、2、5层使用较小的卷积核(11x11、5x5和3x3),并采用ReLU激活函数;第3、4层则使用池化层进行下采样;第6、7层是全连接层,最后一层是softmax分类层。此外,AlexNet还采用了一些增强训练效果的技巧,如局部响应归一化和随机失活等。
- 过拟合:根本原因是特征维度过多,模型假设过于复杂,参数过多,训练数据过少,噪声过多,导致拟合的函数完美的预测训练集,但对新数据的测试集预测结果差。过度的拟合了训练数据,而没有考虑到泛化能力。
- dropout可以理解为它变相地减少了网络训练的参数
上图包含了GPU通信的部分。这是由当时GPU内存的限制引起的,作者使用两块GPU进行计算,因此分为了上下两部分。但是,以目前GPU的处理能力,单GPU足够了,因此其结构图可以如下所示:
经卷积后的矩阵尺寸大小计算公式为:
N = (W - F + 2P)/ S + 1
- 输入图片大小W*W
- Filter大小F*F
- 步长S
- padding的像素数P
padding [1,2] :特征矩阵左侧补1列零,右侧补2列零,上方补1行零,下方补2行零
- import torch.nn as nn
- import torch
-
-
- class AlexNet(nn.Module):
- def __init__(self, num_classes=1000, init_weights=False):
- super(AlexNet, self).__init__()
- self.features = nn.Sequential(
- # 数据集比较小且为了加快训练速度,所以把卷积核的个数96变为原论文的一半48,准确率基本一样
- nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), # input[3, 224, 224] output[48, 55, 55]
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=3, stride=2), # output[48, 27, 27]
- nn.Conv2d(48, 128, kernel_size=5, padding=2), # output[128, 27, 27]
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 13, 13]
- nn.Conv2d(128, 192, kernel_size=3, padding=1), # output[192, 13, 13]
- nn.ReLU(inplace=True),
- nn.Conv2d(192, 192, kernel_size=3, padding=1), # output[192, 13, 13]
- nn.ReLU(inplace=True),
- nn.Conv2d(192, 128, kernel_size=3, padding=1), # output[128, 13, 13]
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 6, 6]
- )
- self.classifier = nn.Sequential(
- nn.Dropout(p=0.5),
- nn.Linear(128 * 6 * 6, 2048),
- nn.ReLU(inplace=True),
- nn.Dropout(p=0.5),
- nn.Linear(2048, 2048),
- nn.ReLU(inplace=True),
- nn.Linear(2048, num_classes),
- )
- # 初始化权重
- if init_weights:
- self._initialize_weights()
-
- def forward(self, x):
- x = self.features(x)
- x = torch.flatten(x, start_dim=1)
- x = self.classifier(x)
- return x
-
- # 初始化权重函数
- def _initialize_weights(self):
- for m in self.modules():
- # 判断该层结构是否是卷积层
- if isinstance(m, nn.Conv2d):
- # 应用 Kaiming 正态分布初始化权重
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- # 如果有偏置项,则将其初始化为零
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
- # 判断该层结构是否是全连接层
- elif isinstance(m, nn.Linear):
- # 使用正态分布方法来初始化权重
- nn.init.normal_(m.weight, 0, 0.01) # 均值为 0,标准差为 0.01
- nn.init.constant_(m.bias, 0) # 偏置项初始化为零
使用nn.ZeroPad2d((1,2,1,2)):左侧补1列,右侧补2列,上方补1行,下方补2行
迭代定义的每一个层结构
- import os
- import sys
- import json
- import torch
- import torch.nn as nn
- from torchvision import transforms, datasets, utils
- import matplotlib.pyplot as plt
- import numpy as np
- import torch.optim as optim
- from tqdm import tqdm
- from model import AlexNet
-
-
- def main():
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- print("using {} device.".format(device))
-
- data_transform = {
- "train": transforms.Compose([transforms.RandomResizedCrop(224), # 随机裁剪
- transforms.RandomHorizontalFlip(), # 随机翻转
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
- "val": transforms.Compose([transforms.Resize((224, 224)), # cannot 224, must (224, 224)
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
-
- data_root = os.path.abspath(os.path.join(os.getcwd(), "../..")) # get data root path
- image_path = os.path.join(data_root, "data_set", "flower_data") # flower data set path
- assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
- train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
- transform=data_transform["train"])
- train_num = len(train_dataset)
-
- # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
- # 获取分类名称对应的索引
- flower_list = train_dataset.class_to_idx
- # 调换键和值的顺序
- cla_dict = dict((val, key) for key, val in flower_list.items())
- # write dict into json file
- # 将cla_dict编码成json的格式
- json_str = json.dumps(cla_dict, indent=4)
- with open('class_indices.json', 'w') as json_file:
- json_file.write(json_str)
-
- batch_size = 32
- nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
- print('Using {} dataloader workers every process'.format(nw))
-
- train_loader = torch.utils.data.DataLoader(train_dataset,
- batch_size=batch_size, shuffle=True,
- num_workers=nw)
-
- validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
- transform=data_transform["val"])
- val_num = len(validate_dataset)
- validate_loader = torch.utils.data.DataLoader(validate_dataset,
- batch_size=4, shuffle=False,
- num_workers=nw)
-
- print("using {} images for training, {} images for validation.".format(train_num,
- val_num))
- # test_data_iter = iter(validate_loader)
- # test_image, test_label = test_data_iter.__next__()
- #
- # def imshow(img):
- # img = img / 2 + 0.5 # unnormalize
- # npimg = img.numpy()
- # plt.imshow(np.transpose(npimg, (1, 2, 0)))
- # plt.show()
- #
- # print(' '.join('%5s' % cla_dict[test_label[j].item()] for j in range(4)))
- # imshow(utils.make_grid(test_image))
-
-
- net = AlexNet(num_classes=5, init_weights=True)
- net.to(device)
- loss_function = nn.CrossEntropyLoss()
- # pata = list(net.parameters()) # 查看模型的参数
- optimizer = optim.Adam(net.parameters(), lr=0.0002)
-
- epochs = 10
- save_path = './AlexNet.pth'
- best_acc = 0.0 # 最佳准确率
- train_steps = len(train_loader)
- for epoch in range(epochs):
- # train
- net.train()
- running_loss = 0.0
- train_bar = tqdm(train_loader, file=sys.stdout)
- for step, data in enumerate(train_bar):
- images, labels = data
- optimizer.zero_grad()
- outputs = net(images.to(device))
- loss = loss_function(outputs, labels.to(device))
- loss.backward()
- optimizer.step()
-
- # print statistics
- running_loss += loss.item()
-
- train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
- epochs,
- loss)
-
- # validate
- net.eval()
- acc = 0.0 # accumulate accurate number / epoch
- with torch.no_grad():
- val_bar = tqdm(validate_loader, file=sys.stdout)
- for val_data in val_bar:
- val_images, val_labels = val_data
- outputs = net(val_images.to(device))
- predict_y = torch.max(outputs, dim=1)[1]
- acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
-
- val_accurate = acc / val_num
- print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
- (epoch + 1, running_loss / train_steps, val_accurate))
-
- if val_accurate > best_acc:
- best_acc = val_accurate
- torch.save(net.state_dict(), save_path)
-
- print('Finished Training')
-
-
- if __name__ == '__main__':
- main()
- import os
-
- # 获取当前工作目录的绝对路径
- print(os.getcwd())
- # 向上移动一级目录的绝对路径
- print(os.path.abspath(os.path.join(os.getcwd(), "..")))
- # 向上移动两级目录的绝对路径
- print(os.path.abspath(os.path.join(os.getcwd(), "../..")))
- # 向上移动三级目录的绝对路径
- print(os.path.abspath(os.path.join(os.getcwd(), "../../..")))
参数:
生成的对象有三个特性:
# 获取分类名称对应的索引
flower_list = train_dataset.class_to_idx
# 调换键和值的顺序
cla_dict = dict((val, key) for key, val in flower_list.items())
json_str = json.dumps(cla_dict, indent=4)
使用 Python 内置的 json
模块中的 dumps
函数,将字典 cla_dict
转换为格式化的 JSON 字符串。indent=4
参数用于指定缩进的空格数,使得生成的 JSON 字符串更易读。
nw
,以便在某些多线程或多进程操作中使用tqdm(train_loader, file=sys.stdout)
Tqdm是python进度条库,可以在Python长循环中添加一个进度提示信息。用户只需要封装任意的迭代器,是一个快速、扩展性强的进度条工具库。
tqdm用在dataloader上其实是对每个batch和batch总数做的进度条
- import os
- import json
-
- import torch
- from PIL import Image
- from torchvision import transforms
- import matplotlib.pyplot as plt
-
- from model import AlexNet
-
-
- def main():
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
-
- data_transform = transforms.Compose(
- [transforms.Resize((224, 224)),
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
-
- # load image
- img_path = "../tulip.jpg"
- assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
- img = Image.open(img_path)
-
- plt.imshow(img)
- # [N, C, H, W]
- img = data_transform(img)
- # expand batch dimension
- img = torch.unsqueeze(img, dim=0)
-
- # read class_indict
- json_path = './class_indices.json'
- assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
-
- with open(json_path, "r") as f:
- class_indict = json.load(f)
-
- # create model
- model = AlexNet(num_classes=5).to(device)
-
- # load model weights
- weights_path = "./AlexNet.pth"
- assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
- model.load_state_dict(torch.load(weights_path))
-
- model.eval()
- with torch.no_grad():
- # predict class
- output = torch.squeeze(model(img.to(device))).cpu()
- predict = torch.softmax(output, dim=0)
- predict_cla = torch.argmax(predict).numpy()
-
- print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)],
- predict[predict_cla].numpy())
- plt.title(print_res)
- for i in range(len(predict)):
- print("class: {:10} prob: {:.3}".format(class_indict[str(i)],
- predict[i].numpy()))
- plt.show()
-
-
- if __name__ == '__main__':
- main()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。