赞
踩
老规矩,先上图吧。。
上面电源线接到VBUS了,给的一个5V,应该3.3V。不过这个屏还能正常跑也是不错。
折腾了一个晚上,主要还是找驱动,然后熟悉SPI接口的接法。
遇到了两个坑:
1 接口名称不统一,相对于I2C的两根线,这个SPI显示接口名称真的很多,SCL/SCK,SDA/MOSI,A0/DC,最后才知道这几个是一个东西。网上也找到几个参考,但是和板子上的标号对不起来。后来才慢慢搞明白。
2 没有miso。驱动代码库里面有个,example也有这个,但是死活板子上没这个口。最后看了一些参考代码,这个可以直接给None。
这两个坑踩过去,就没啥问题了,一次点亮出图。
这个应该会写两篇,一篇重点写SPI,一篇重点写显示。
驱动来自:GitHub - boochow/MicroPython-ST7735: ST7735 TFT LCD driver for MicroPython
接线:
ST7735 Pin | Pico Pin |
---|---|
VCC | 3.3V |
GND | GND |
SCL (SCK) | GP10 |
SDA (MOSI) | GP11 |
RES (RST) | GP17 |
DC(A0) | GP16 |
CS | GP18 |
应用(显示图)
- from ST7735 import TFT,TFTColor
- from machine import SPI,Pin
- spi = SPI(1, baudrate=20000000, polarity=0, phase=0, sck=Pin(10), mosi=Pin(11), miso=None)
- tft=TFT(spi,16,17,18)
- tft.initr()
- tft.rgb(True)
- tft.fill(TFT.BLACK)
-
- f=open('test128x160.bmp', 'rb')
- if f.read(2) == b'BM': #header
- dummy = f.read(8) #file size(4), creator bytes(4)
- offset = int.from_bytes(f.read(4), 'little')
- hdrsize = int.from_bytes(f.read(4), 'little')
- width = int.from_bytes(f.read(4), 'little')
- height = int.from_bytes(f.read(4), 'little')
- if int.from_bytes(f.read(2), 'little') == 1: #planes must be 1
- depth = int.from_bytes(f.read(2), 'little')
- if depth == 24 and int.from_bytes(f.read(4), 'little') == 0:#compress method == uncompressed
- print("Image size:", width, "x", height)
- rowsize = (width * 3 + 3) & ~3
- if height < 0:
- height = -height
- flip = False
- else:
- flip = True
- w, h = width, height
- if w > 128: w = 128
- if h > 160: h = 160
- tft._setwindowloc((0,0),(w - 1,h - 1))
- for row in range(h):
- if flip:
- pos = offset + (height - 1 - row) * rowsize
- else:
- pos = offset + row * rowsize
- if f.tell() != pos:
- dummy = f.seek(pos)
- for col in range(w):
- bgr = f.read(3)
- tft._pushcolor(TFTColor(bgr[2],bgr[1],bgr[0]))
- spi.deinit()
-
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
驱动
- #driver for Sainsmart 1.8" TFT display ST7735
- #Translated by Guy Carver from the ST7735 sample code.
- #Modirfied for micropython-esp32 by boochow
-
- import machine
- import time
- from math import sqrt
-
- #TFTRotations and TFTRGB are bits to set
- # on MADCTL to control display rotation/color layout
- #Looking at display with pins on top.
- #00 = upper left printing right
- #10 = does nothing (MADCTL_ML)
- #20 = upper left printing down (backwards) (Vertical flip)
- #40 = upper right printing left (backwards) (X Flip)
- #80 = lower left printing right (backwards) (Y Flip)
- #04 = (MADCTL_MH)
-
- #60 = 90 right rotation
- #C0 = 180 right rotation
- #A0 = 270 right rotation
- TFTRotations = [0x00, 0x60, 0xC0, 0xA0]
- TFTBGR = 0x08 #When set color is bgr else rgb.
- TFTRGB = 0x00
-
- #@micropython.native
- def clamp( aValue, aMin, aMax ) :
- return max(aMin, min(aMax, aValue))
-
- #@micropython.native
- def TFTColor( aR, aG, aB ) :
- '''Create a 16 bit rgb value from the given R,G,B from 0-255.
- This assumes rgb 565 layout and will be incorrect for bgr.'''
- return ((aR & 0xF8) << 8) | ((aG & 0xFC) << 3) | (aB >> 3)
-
- ScreenSize = (128, 160)
-
- class TFT(object) :
- """Sainsmart TFT 7735 display driver."""
-
- NOP = 0x0
- SWRESET = 0x01
- RDDID = 0x04
- RDDST = 0x09
-
- SLPIN = 0x10
- SLPOUT = 0x11
- PTLON = 0x12
- NORON = 0x13
-
- INVOFF = 0x20
- INVON = 0x21
- DISPOFF = 0x28
- DISPON = 0x29
- CASET = 0x2A
- RASET = 0x2B
- RAMWR = 0x2C
- RAMRD = 0x2E
-
- VSCRDEF = 0x33
- VSCSAD = 0x37
-
- COLMOD = 0x3A
- MADCTL = 0x36
-
- FRMCTR1 = 0xB1
- FRMCTR2 = 0xB2
- FRMCTR3 = 0xB3
- INVCTR = 0xB4
- DISSET5 = 0xB6
-
- PWCTR1 = 0xC0
- PWCTR2 = 0xC1
- PWCTR3 = 0xC2
- PWCTR4 = 0xC3
- PWCTR5 = 0xC4
- VMCTR1 = 0xC5
-
- RDID1 = 0xDA
- RDID2 = 0xDB
- RDID3 = 0xDC
- RDID4 = 0xDD
-
- PWCTR6 = 0xFC
-
- GMCTRP1 = 0xE0
- GMCTRN1 = 0xE1
-
- BLACK = 0
- RED = TFTColor(0xFF, 0x00, 0x00)
- MAROON = TFTColor(0x80, 0x00, 0x00)
- GREEN = TFTColor(0x00, 0xFF, 0x00)
- FOREST = TFTColor(0x00, 0x80, 0x80)
- BLUE = TFTColor(0x00, 0x00, 0xFF)
- NAVY = TFTColor(0x00, 0x00, 0x80)
- CYAN = TFTColor(0x00, 0xFF, 0xFF)
- YELLOW = TFTColor(0xFF, 0xFF, 0x00)
- PURPLE = TFTColor(0xFF, 0x00, 0xFF)
- WHITE = TFTColor(0xFF, 0xFF, 0xFF)
- GRAY = TFTColor(0x80, 0x80, 0x80)
-
- @staticmethod
- def color( aR, aG, aB ) :
- '''Create a 565 rgb TFTColor value'''
- return TFTColor(aR, aG, aB)
-
- def __init__( self, spi, aDC, aReset, aCS) :
- """aLoc SPI pin location is either 1 for 'X' or 2 for 'Y'.
- aDC is the DC pin and aReset is the reset pin."""
- self._size = ScreenSize
- self._offset = bytearray([0,0])
- self.rotate = 0 #Vertical with top toward pins.
- self._rgb = True #color order of rgb.
- self.tfa = 0 #top fixed area
- self.bfa = 0 #bottom fixed area
- self.dc = machine.Pin(aDC, machine.Pin.OUT, machine.Pin.PULL_DOWN)
- self.reset = machine.Pin(aReset, machine.Pin.OUT, machine.Pin.PULL_DOWN)
- self.cs = machine.Pin(aCS, machine.Pin.OUT, machine.Pin.PULL_DOWN)
- self.cs(1)
- self.spi = spi
- self.colorData = bytearray(2)
- self.windowLocData = bytearray(4)
-
- def size( self ) :
- return self._size
-
- # @micropython.native
- def on( self, aTF = True ) :
- '''Turn display on or off.'''
- self._writecommand(TFT.DISPON if aTF else TFT.DISPOFF)
-
- # @micropython.native
- def invertcolor( self, aBool ) :
- '''Invert the color data IE: Black = White.'''
- self._writecommand(TFT.INVON if aBool else TFT.INVOFF)
-
- # @micropython.native
- def rgb( self, aTF = True ) :
- '''True = rgb else bgr'''
- self._rgb = aTF
- self._setMADCTL()
-
- # @micropython.native
- def rotation( self, aRot ) :
- '''0 - 3. Starts vertical with top toward pins and rotates 90 deg
- clockwise each step.'''
- if (0 <= aRot < 4):
- rotchange = self.rotate ^ aRot
- self.rotate = aRot
- #If switching from vertical to horizontal swap x,y
- # (indicated by bit 0 changing).
- if (rotchange & 1):
- self._size =(self._size[1], self._size[0])
- self._setMADCTL()
-
- # @micropython.native
- def pixel( self, aPos, aColor ) :
- '''Draw a pixel at the given position'''
- if 0 <= aPos[0] < self._size[0] and 0 <= aPos[1] < self._size[1]:
- self._setwindowpoint(aPos)
- self._pushcolor(aColor)
-
- # @micropython.native
- def text( self, aPos, aString, aColor, aFont, aSize = 1, nowrap = False ) :
- '''Draw a text at the given position. If the string reaches the end of the
- display it is wrapped to aPos[0] on the next line. aSize may be an integer
- which will size the font uniformly on w,h or a or any type that may be
- indexed with [0] or [1].'''
-
- if aFont == None:
- return
-
- #Make a size either from single value or 2 elements.
- if (type(aSize) == int) or (type(aSize) == float):
- wh = (aSize, aSize)
- else:
- wh = aSize
-
- px, py = aPos
- width = wh[0] * aFont["Width"] + 1
- for c in aString:
- self.char((px, py), c, aColor, aFont, wh)
- px += width
- #We check > rather than >= to let the right (blank) edge of the
- # character print off the right of the screen.
- if px + width > self._size[0]:
- if nowrap:
- break
- else:
- py += aFont["Height"] * wh[1] + 1
- px = aPos[0]
-
- # @micropython.native
- def char( self, aPos, aChar, aColor, aFont, aSizes ) :
- '''Draw a character at the given position using the given font and color.
- aSizes is a tuple with x, y as integer scales indicating the
- # of pixels to draw for each pixel in the character.'''
-
- if aFont == None:
- return
-
- startchar = aFont['Start']
- endchar = aFont['End']
-
- ci = ord(aChar)
- if (startchar <= ci <= endchar):
- fontw = aFont['Width']
- fonth = aFont['Height']
- ci = (ci - startchar) * fontw
-
- charA = aFont["Data"][ci:ci + fontw]
- px = aPos[0]
- if aSizes[0] <= 1 and aSizes[1] <= 1 :
- buf = bytearray(2 * fonth * fontw)
- for q in range(fontw) :
- c = charA[q]
- for r in range(fonth) :
- if c & 0x01 :
- pos = 2 * (r * fontw + q)
- buf[pos] = aColor >> 8
- buf[pos + 1] = aColor & 0xff
- c >>= 1
- self.image(aPos[0], aPos[1], aPos[0] + fontw - 1, aPos[1] + fonth - 1, buf)
- else:
- for c in charA :
- py = aPos[1]
- for r in range(fonth) :
- if c & 0x01 :
- self.fillrect((px, py), aSizes, aColor)
- py += aSizes[1]
- c >>= 1
- px += aSizes[0]
-
- # @micropython.native
- def line( self, aStart, aEnd, aColor ) :
- '''Draws a line from aStart to aEnd in the given color. Vertical or horizontal
- lines are forwarded to vline and hline.'''
- if aStart[0] == aEnd[0]:
- #Make sure we use the smallest y.
- pnt = aEnd if (aEnd[1] < aStart[1]) else aStart
- self.vline(pnt, abs(aEnd[1] - aStart[1]) + 1, aColor)
- elif aStart[1] == aEnd[1]:
- #Make sure we use the smallest x.
- pnt = aEnd if aEnd[0] < aStart[0] else aStart
- self.hline(pnt, abs(aEnd[0] - aStart[0]) + 1, aColor)
- else:
- px, py = aStart
- ex, ey = aEnd
- dx = ex - px
- dy = ey - py
- inx = 1 if dx > 0 else -1
- iny = 1 if dy > 0 else -1
-
- dx = abs(dx)
- dy = abs(dy)
- if (dx >= dy):
- dy <<= 1
- e = dy - dx
- dx <<= 1
- while (px != ex):
- self.pixel((px, py), aColor)
- if (e >= 0):
- py += iny
- e -= dx
- e += dy
- px += inx
- else:
- dx <<= 1
- e = dx - dy
- dy <<= 1
- while (py != ey):
- self.pixel((px, py), aColor)
- if (e >= 0):
- px += inx
- e -= dy
- e += dx
- py += iny
-
- # @micropython.native
- def vline( self, aStart, aLen, aColor ) :
- '''Draw a vertical line from aStart for aLen. aLen may be negative.'''
- start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
- stop = (start[0], clamp(start[1] + aLen, 0, self._size[1]))
- #Make sure smallest y 1st.
- if (stop[1] < start[1]):
- start, stop = stop, start
- self._setwindowloc(start, stop)
- self._setColor(aColor)
- self._draw(aLen)
-
- # @micropython.native
- def hline( self, aStart, aLen, aColor ) :
- '''Draw a horizontal line from aStart for aLen. aLen may be negative.'''
- start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
- stop = (clamp(start[0] + aLen, 0, self._size[0]), start[1])
- #Make sure smallest x 1st.
- if (stop[0] < start[0]):
- start, stop = stop, start
- self._setwindowloc(start, stop)
- self._setColor(aColor)
- self._draw(aLen)
-
- # @micropython.native
- def rect( self, aStart, aSize, aColor ) :
- '''Draw a hollow rectangle. aStart is the smallest coordinate corner
- and aSize is a tuple indicating width, height.'''
- self.hline(aStart, aSize[0], aColor)
- self.hline((aStart[0], aStart[1] + aSize[1] - 1), aSize[0], aColor)
- self.vline(aStart, aSize[1], aColor)
- self.vline((aStart[0] + aSize[0] - 1, aStart[1]), aSize[1], aColor)
-
- # @micropython.native
- def fillrect( self, aStart, aSize, aColor ) :
- '''Draw a filled rectangle. aStart is the smallest coordinate corner
- and aSize is a tuple indicating width, height.'''
- start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
- end = (clamp(start[0] + aSize[0] - 1, 0, self._size[0]), clamp(start[1] + aSize[1] - 1, 0, self._size[1]))
-
- if (end[0] < start[0]):
- tmp = end[0]
- end = (start[0], end[1])
- start = (tmp, start[1])
- if (end[1] < start[1]):
- tmp = end[1]
- end = (end[0], start[1])
- start = (start[0], tmp)
-
- self._setwindowloc(start, end)
- numPixels = (end[0] - start[0] + 1) * (end[1] - start[1] + 1)
- self._setColor(aColor)
- self._draw(numPixels)
-
- # @micropython.native
- def circle( self, aPos, aRadius, aColor ) :
- '''Draw a hollow circle with the given radius and color with aPos as center.'''
- self.colorData[0] = aColor >> 8
- self.colorData[1] = aColor
- xend = int(0.7071 * aRadius) + 1
- rsq = aRadius * aRadius
- for x in range(xend) :
- y = int(sqrt(rsq - x * x))
- xp = aPos[0] + x
- yp = aPos[1] + y
- xn = aPos[0] - x
- yn = aPos[1] - y
- xyp = aPos[0] + y
- yxp = aPos[1] + x
- xyn = aPos[0] - y
- yxn = aPos[1] - x
-
- self._setwindowpoint((xp, yp))
- self._writedata(self.colorData)
- self._setwindowpoint((xp, yn))
- self._writedata(self.colorData)
- self._setwindowpoint((xn, yp))
- self._writedata(self.colorData)
- self._setwindowpoint((xn, yn))
- self._writedata(self.colorData)
- self._setwindowpoint((xyp, yxp))
- self._writedata(self.colorData)
- self._setwindowpoint((xyp, yxn))
- self._writedata(self.colorData)
- self._setwindowpoint((xyn, yxp))
- self._writedata(self.colorData)
- self._setwindowpoint((xyn, yxn))
- self._writedata(self.colorData)
-
- # @micropython.native
- def fillcircle( self, aPos, aRadius, aColor ) :
- '''Draw a filled circle with given radius and color with aPos as center'''
- rsq = aRadius * aRadius
- for x in range(aRadius) :
- y = int(sqrt(rsq - x * x))
- y0 = aPos[1] - y
- ey = y0 + y * 2
- y0 = clamp(y0, 0, self._size[1])
- ln = abs(ey - y0) + 1;
-
- self.vline((aPos[0] + x, y0), ln, aColor)
- self.vline((aPos[0] - x, y0), ln, aColor)
-
- def fill( self, aColor = BLACK ) :
- '''Fill screen with the given color.'''
- self.fillrect((0, 0), self._size, aColor)
-
- def image( self, x0, y0, x1, y1, data ) :
- self._setwindowloc((x0, y0), (x1, y1))
- self._writedata(data)
-
- def setvscroll(self, tfa, bfa) :
- ''' set vertical scroll area '''
- self._writecommand(TFT.VSCRDEF)
- data2 = bytearray([0, tfa])
- self._writedata(data2)
- data2[1] = 162 - tfa - bfa
- self._writedata(data2)
- data2[1] = bfa
- self._writedata(data2)
- self.tfa = tfa
- self.bfa = bfa
-
- def vscroll(self, value) :
- a = value + self.tfa
- if (a + self.bfa > 162) :
- a = 162 - self.bfa
- self._vscrolladdr(a)
-
- def _vscrolladdr(self, addr) :
- self._writecommand(TFT.VSCSAD)
- data2 = bytearray([addr >> 8, addr & 0xff])
- self._writedata(data2)
-
- # @micropython.native
- def _setColor( self, aColor ) :
- self.colorData[0] = aColor >> 8
- self.colorData[1] = aColor
- self.buf = bytes(self.colorData) * 32
-
- # @micropython.native
- def _draw( self, aPixels ) :
- '''Send given color to the device aPixels times.'''
-
- self.dc(1)
- self.cs(0)
- for i in range(aPixels//32):
- self.spi.write(self.buf)
- rest = (int(aPixels) % 32)
- if rest > 0:
- buf2 = bytes(self.colorData) * rest
- self.spi.write(buf2)
- self.cs(1)
-
- # @micropython.native
- def _setwindowpoint( self, aPos ) :
- '''Set a single point for drawing a color to.'''
- x = self._offset[0] + int(aPos[0])
- y = self._offset[1] + int(aPos[1])
- self._writecommand(TFT.CASET) #Column address set.
- self.windowLocData[0] = self._offset[0]
- self.windowLocData[1] = x
- self.windowLocData[2] = self._offset[0]
- self.windowLocData[3] = x
- self._writedata(self.windowLocData)
-
- self._writecommand(TFT.RASET) #Row address set.
- self.windowLocData[0] = self._offset[1]
- self.windowLocData[1] = y
- self.windowLocData[2] = self._offset[1]
- self.windowLocData[3] = y
- self._writedata(self.windowLocData)
- self._writecommand(TFT.RAMWR) #Write to RAM.
-
- # @micropython.native
- def _setwindowloc( self, aPos0, aPos1 ) :
- '''Set a rectangular area for drawing a color to.'''
- self._writecommand(TFT.CASET) #Column address set.
- self.windowLocData[0] = self._offset[0]
- self.windowLocData[1] = self._offset[0] + int(aPos0[0])
- self.windowLocData[2] = self._offset[0]
- self.windowLocData[3] = self._offset[0] + int(aPos1[0])
- self._writedata(self.windowLocData)
-
- self._writecommand(TFT.RASET) #Row address set.
- self.windowLocData[0] = self._offset[1]
- self.windowLocData[1] = self._offset[1] + int(aPos0[1])
- self.windowLocData[2] = self._offset[1]
- self.windowLocData[3] = self._offset[1] + int(aPos1[1])
- self._writedata(self.windowLocData)
-
- self._writecommand(TFT.RAMWR) #Write to RAM.
-
- #@micropython.native
- def _writecommand( self, aCommand ) :
- '''Write given command to the device.'''
- self.dc(0)
- self.cs(0)
- self.spi.write(bytearray([aCommand]))
- self.cs(1)
-
- #@micropython.native
- def _writedata( self, aData ) :
- '''Write given data to the device. This may be
- either a single int or a bytearray of values.'''
- self.dc(1)
- self.cs(0)
- self.spi.write(aData)
- self.cs(1)
-
- #@micropython.native
- def _pushcolor( self, aColor ) :
- '''Push given color to the device.'''
- self.colorData[0] = aColor >> 8
- self.colorData[1] = aColor
- self._writedata(self.colorData)
-
- #@micropython.native
- def _setMADCTL( self ) :
- '''Set screen rotation and RGB/BGR format.'''
- self._writecommand(TFT.MADCTL)
- rgb = TFTRGB if self._rgb else TFTBGR
- self._writedata(bytearray([TFTRotations[self.rotate] | rgb]))
-
- #@micropython.native
- def _reset( self ) :
- '''Reset the device.'''
- self.dc(0)
- self.reset(1)
- time.sleep_us(500)
- self.reset(0)
- time.sleep_us(500)
- self.reset(1)
- time.sleep_us(500)
-
- def initb( self ) :
- '''Initialize blue tab version.'''
- self._size = (ScreenSize[0] + 2, ScreenSize[1] + 1)
- self._reset()
- self._writecommand(TFT.SWRESET) #Software reset.
- time.sleep_us(50)
- self._writecommand(TFT.SLPOUT) #out of sleep mode.
- time.sleep_us(500)
-
- data1 = bytearray(1)
- self._writecommand(TFT.COLMOD) #Set color mode.
- data1[0] = 0x05 #16 bit color.
- self._writedata(data1)
- time.sleep_us(10)
-
- data3 = bytearray([0x00, 0x06, 0x03]) #fastest refresh, 6 lines front, 3 lines back.
- self._writecommand(TFT.FRMCTR1) #Frame rate control.
- self._writedata(data3)
- time.sleep_us(10)
-
- self._writecommand(TFT.MADCTL)
- data1[0] = 0x08 #row address/col address, bottom to top refresh
- self._writedata(data1)
-
- data2 = bytearray(2)
- self._writecommand(TFT.DISSET5) #Display settings
- data2[0] = 0x15 #1 clock cycle nonoverlap, 2 cycle gate rise, 3 cycle oscil, equalize
- data2[1] = 0x02 #fix on VTL
- self._writedata(data2)
-
- self._writecommand(TFT.INVCTR) #Display inversion control
- data1[0] = 0x00 #Line inversion.
- self._writedata(data1)
-
- self._writecommand(TFT.PWCTR1) #Power control
- data2[0] = 0x02 #GVDD = 4.7V
- data2[1] = 0x70 #1.0uA
- self._writedata(data2)
- time.sleep_us(10)
-
- self._writecommand(TFT.PWCTR2) #Power control
- data1[0] = 0x05 #VGH = 14.7V, VGL = -7.35V
- self._writedata(data1)
-
- self._writecommand(TFT.PWCTR3) #Power control
- data2[0] = 0x01 #Opamp current small
- data2[1] = 0x02 #Boost frequency
- self._writedata(data2)
-
- self._writecommand(TFT.VMCTR1) #Power control
- data2[0] = 0x3C #VCOMH = 4V
- data2[1] = 0x38 #VCOML = -1.1V
- self._writedata(data2)
- time.sleep_us(10)
-
- self._writecommand(TFT.PWCTR6) #Power control
- data2[0] = 0x11
- data2[1] = 0x15
- self._writedata(data2)
-
- #These different values don't seem to make a difference.
- # dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
- # 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
- dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
- 0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
- self._writecommand(TFT.GMCTRP1)
- self._writedata(dataGMCTRP)
-
- # dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
- # 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
- dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
- 0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
- self._writecommand(TFT.GMCTRN1)
- self._writedata(dataGMCTRN)
- time.sleep_us(10)
-
- self._writecommand(TFT.CASET) #Column address set.
- self.windowLocData[0] = 0x00
- self.windowLocData[1] = 2 #Start at column 2
- self.windowLocData[2] = 0x00
- self.windowLocData[3] = self._size[0] - 1
- self._writedata(self.windowLocData)
-
- self._writecommand(TFT.RASET) #Row address set.
- self.windowLocData[1] = 1 #Start at row 2.
- self.windowLocData[3] = self._size[1] - 1
- self._writedata(self.windowLocData)
-
- self._writecommand(TFT.NORON) #Normal display on.
- time.sleep_us(10)
-
- self._writecommand(TFT.RAMWR)
- time.sleep_us(500)
-
- self._writecommand(TFT.DISPON)
- self.cs(1)
- time.sleep_us(500)
-
- def initr( self ) :
- '''Initialize a red tab version.'''
- self._reset()
-
- self._writecommand(TFT.SWRESET) #Software reset.
- time.sleep_us(150)
- self._writecommand(TFT.SLPOUT) #out of sleep mode.
- time.sleep_us(500)
-
- data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back.
- self._writecommand(TFT.FRMCTR1) #Frame rate control.
- self._writedata(data3)
-
- self._writecommand(TFT.FRMCTR2) #Frame rate control.
- self._writedata(data3)
-
- data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d])
- self._writecommand(TFT.FRMCTR3) #Frame rate control.
- self._writedata(data6)
- time.sleep_us(10)
-
- data1 = bytearray(1)
- self._writecommand(TFT.INVCTR) #Display inversion control
- data1[0] = 0x07 #Line inversion.
- self._writedata(data1)
-
- self._writecommand(TFT.PWCTR1) #Power control
- data3[0] = 0xA2
- data3[1] = 0x02
- data3[2] = 0x84
- self._writedata(data3)
-
- self._writecommand(TFT.PWCTR2) #Power control
- data1[0] = 0xC5 #VGH = 14.7V, VGL = -7.35V
- self._writedata(data1)
-
- data2 = bytearray(2)
- self._writecommand(TFT.PWCTR3) #Power control
- data2[0] = 0x0A #Opamp current small
- data2[1] = 0x00 #Boost frequency
- self._writedata(data2)
-
- self._writecommand(TFT.PWCTR4) #Power control
- data2[0] = 0x8A #Opamp current small
- data2[1] = 0x2A #Boost frequency
- self._writedata(data2)
-
- self._writecommand(TFT.PWCTR5) #Power control
- data2[0] = 0x8A #Opamp current small
- data2[1] = 0xEE #Boost frequency
- self._writedata(data2)
-
- self._writecommand(TFT.VMCTR1) #Power control
- data1[0] = 0x0E
- self._writedata(data1)
-
- self._writecommand(TFT.INVOFF)
-
- self._writecommand(TFT.MADCTL) #Power control
- data1[0] = 0xC8
- self._writedata(data1)
-
- self._writecommand(TFT.COLMOD)
- data1[0] = 0x05
- self._writedata(data1)
-
- self._writecommand(TFT.CASET) #Column address set.
- self.windowLocData[0] = 0x00
- self.windowLocData[1] = 0x00
- self.windowLocData[2] = 0x00
- self.windowLocData[3] = self._size[0] - 1
- self._writedata(self.windowLocData)
-
- self._writecommand(TFT.RASET) #Row address set.
- self.windowLocData[3] = self._size[1] - 1
- self._writedata(self.windowLocData)
-
- dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
- 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
- self._writecommand(TFT.GMCTRP1)
- self._writedata(dataGMCTRP)
-
- dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
- 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
- self._writecommand(TFT.GMCTRN1)
- self._writedata(dataGMCTRN)
- time.sleep_us(10)
-
- self._writecommand(TFT.DISPON)
- time.sleep_us(100)
-
- self._writecommand(TFT.NORON) #Normal display on.
- time.sleep_us(10)
-
- self.cs(1)
-
- def initb2( self ) :
- '''Initialize another blue tab version.'''
- self._size = (ScreenSize[0] + 2, ScreenSize[1] + 1)
- self._offset[0] = 2
- self._offset[1] = 1
- self._reset()
- self._writecommand(TFT.SWRESET) #Software reset.
- time.sleep_us(50)
- self._writecommand(TFT.SLPOUT) #out of sleep mode.
- time.sleep_us(500)
-
- data3 = bytearray([0x01, 0x2C, 0x2D]) #
- self._writecommand(TFT.FRMCTR1) #Frame rate control.
- self._writedata(data3)
- time.sleep_us(10)
-
- self._writecommand(TFT.FRMCTR2) #Frame rate control.
- self._writedata(data3)
- time.sleep_us(10)
-
- self._writecommand(TFT.FRMCTR3) #Frame rate control.
- self._writedata(data3)
- time.sleep_us(10)
-
- self._writecommand(TFT.INVCTR) #Display inversion control
- data1 = bytearray(1) #
- data1[0] = 0x07
- self._writedata(data1)
-
- self._writecommand(TFT.PWCTR1) #Power control
- data3[0] = 0xA2 #
- data3[1] = 0x02 #
- data3[2] = 0x84 #
- self._writedata(data3)
- time.sleep_us(10)
-
- self._writecommand(TFT.PWCTR2) #Power control
- data1[0] = 0xC5 #
- self._writedata(data1)
-
- self._writecommand(TFT.PWCTR3) #Power control
- data2 = bytearray(2)
- data2[0] = 0x0A #
- data2[1] = 0x00 #
- self._writedata(data2)
-
- self._writecommand(TFT.PWCTR4) #Power control
- data2[0] = 0x8A #
- data2[1] = 0x2A #
- self._writedata(data2)
-
- self._writecommand(TFT.PWCTR5) #Power control
- data2[0] = 0x8A #
- data2[1] = 0xEE #
- self._writedata(data2)
-
- self._writecommand(TFT.VMCTR1) #Power control
- data1[0] = 0x0E #
- self._writedata(data1)
- time.sleep_us(10)
-
- self._writecommand(TFT.MADCTL)
- data1[0] = 0xC8 #row address/col address, bottom to top refresh
- self._writedata(data1)
-
- #These different values don't seem to make a difference.
- # dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
- # 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
- dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
- 0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
- self._writecommand(TFT.GMCTRP1)
- self._writedata(dataGMCTRP)
-
- # dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
- # 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
- dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
- 0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
- self._writecommand(TFT.GMCTRN1)
- self._writedata(dataGMCTRN)
- time.sleep_us(10)
-
- self._writecommand(TFT.CASET) #Column address set.
- self.windowLocData[0] = 0x00
- self.windowLocData[1] = 0x02 #Start at column 2
- self.windowLocData[2] = 0x00
- self.windowLocData[3] = self._size[0] - 1
- self._writedata(self.windowLocData)
-
- self._writecommand(TFT.RASET) #Row address set.
- self.windowLocData[1] = 0x01 #Start at row 2.
- self.windowLocData[3] = self._size[1] - 1
- self._writedata(self.windowLocData)
-
- data1 = bytearray(1)
- self._writecommand(TFT.COLMOD) #Set color mode.
- data1[0] = 0x05 #16 bit color.
- self._writedata(data1)
- time.sleep_us(10)
-
- self._writecommand(TFT.NORON) #Normal display on.
- time.sleep_us(10)
-
- self._writecommand(TFT.RAMWR)
- time.sleep_us(500)
-
- self._writecommand(TFT.DISPON)
- self.cs(1)
- time.sleep_us(500)
-
- #@micropython.native
- def initg( self ) :
- '''Initialize a green tab version.'''
- self._reset()
-
- self._writecommand(TFT.SWRESET) #Software reset.
- time.sleep_us(150)
- self._writecommand(TFT.SLPOUT) #out of sleep mode.
- time.sleep_us(255)
-
- data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back.
- self._writecommand(TFT.FRMCTR1) #Frame rate control.
- self._writedata(data3)
-
- self._writecommand(TFT.FRMCTR2) #Frame rate control.
- self._writedata(data3)
-
- data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d])
- self._writecommand(TFT.FRMCTR3) #Frame rate control.
- self._writedata(data6)
- time.sleep_us(10)
-
- self._writecommand(TFT.INVCTR) #Display inversion control
- self._writedata(bytearray([0x07]))
- self._writecommand(TFT.PWCTR1) #Power control
- data3[0] = 0xA2
- data3[1] = 0x02
- data3[2] = 0x84
- self._writedata(data3)
-
- self._writecommand(TFT.PWCTR2) #Power control
- self._writedata(bytearray([0xC5]))
-
- data2 = bytearray(2)
- self._writecommand(TFT.PWCTR3) #Power control
- data2[0] = 0x0A #Opamp current small
- data2[1] = 0x00 #Boost frequency
- self._writedata(data2)
-
- self._writecommand(TFT.PWCTR4) #Power control
- data2[0] = 0x8A #Opamp current small
- data2[1] = 0x2A #Boost frequency
- self._writedata(data2)
-
- self._writecommand(TFT.PWCTR5) #Power control
- data2[0] = 0x8A #Opamp current small
- data2[1] = 0xEE #Boost frequency
- self._writedata(data2)
-
- self._writecommand(TFT.VMCTR1) #Power control
- self._writedata(bytearray([0x0E]))
-
- self._writecommand(TFT.INVOFF)
-
- self._setMADCTL()
-
- self._writecommand(TFT.COLMOD)
- self._writedata(bytearray([0x05]))
-
- self._writecommand(TFT.CASET) #Column address set.
- self.windowLocData[0] = 0x00
- self.windowLocData[1] = 0x01 #Start at row/column 1.
- self.windowLocData[2] = 0x00
- self.windowLocData[3] = self._size[0] - 1
- self._writedata(self.windowLocData)
-
- self._writecommand(TFT.RASET) #Row address set.
- self.windowLocData[3] = self._size[1] - 1
- self._writedata(self.windowLocData)
-
- dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
- 0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
- self._writecommand(TFT.GMCTRP1)
- self._writedata(dataGMCTRP)
-
- dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
- 0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
- self._writecommand(TFT.GMCTRN1)
- self._writedata(dataGMCTRN)
-
- self._writecommand(TFT.NORON) #Normal display on.
- time.sleep_us(10)
-
- self._writecommand(TFT.DISPON)
- time.sleep_us(100)
-
- self.cs(1)
-
- def maker( ) :
- t = TFT(1, "X1", "X2")
- print("Initializing")
- t.initr()
- t.fill(0)
- return t
-
- def makeb( ) :
- t = TFT(1, "X1", "X2")
- print("Initializing")
- t.initb()
- t.fill(0)
- return t
-
- def makeg( ) :
- t = TFT(1, "X1", "X2")
- print("Initializing")
- t.initg()
- t.fill(0)
- return t
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
插上祖传逻辑分析仪,五根线一起上,抓信号。
信号 | 通道 |
SDA | 0 |
SCK | 1 |
DC | 2 |
CS | 3 |
RESET | 4 |
接口说明:
整个信号大概是这样的,可以看到reset就是开始拉低再拉高,相当于重启了屏幕,之后就没事了。DC干的事情也很少。这部分就不多看了。重点还是看前面三个SPI的吧。
SPI一般是4根线,SCLK是时钟,MOSI是主设备输出,MISO是主设备输入(LCD没有输入,所以这次少了一根线),SS是片选。
不同于I2C,SPI是通过片选信号来提供多设备支持。如下:
只有片选信号拉低时,信号才有效。这样也造成了SPI需要多个片选线,如果挂10个设备,就要10个片选线,这点确实就不如I2C先进了。。。
SPI(0, baudrate=40000000, polarity=1, phase=1, sck=Pin(18), mosi=Pin(19))
SPI库背身只管理时钟和数据,片选是自己管理。
- def _writecommand( self, aCommand ) :
- '''Write given command to the device.'''
- self.dc(0)
- self.cs(0)
- self.spi.write(bytearray([aCommand]))
- self.cs(1)
从代码也可以看出,写命令时候会手动将cs拉低。之后恢复。
然后是时钟线,这个和I2C差不多,倒是没啥好说的。就是上沿时候的MOSI或者MISO才算有效。(但是时钟线的间隔也有点怪。。。也不是固定的。。。)
最后就是MOSI,这里也叫SDA。
根据时钟线上沿的MOSI信号,所以数据是1000 0000,最后换算出来就是0x80。(其实最后还有1个1,但是我不知道为什么没有解析,是不是一次只处理8位?)
好吧,虽然还有一些疑问,后面澄清了我会再更新。但是SPI的重点内容我想都提到了,就到这里了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。