当前位置:   article > 正文

记录一下yolo v5从零训练COCO数据集的情况_yolov5训练coco数据集要多久

yolov5训练coco数据集要多久

关于coco2017数据集

coco2017 80个类别  

训练集118287 验证集 5000 测试集40670 一共163957

训练集中有117266被标注(每张图片有多个不同种类的目标) 验证集中有4952张被标注 

关于混合精度训练 

yolov5默认开启混合精度训练:

  1. # Forward
  2. with torch.cuda.amp.autocast(amp):
  3. pred = model(imgs) # forward
  4. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  5. if RANK != -1:
  6. loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
  7. if opt.quad:
  8. loss *= 4.

 官方说的是在单卡V100显卡上大概训练s模型需要2天

 我这里是单卡3090,如果是基于预训练模型训练,用时不到4天半,55个小时,但是从零训练应该不能基于预训练模型,如果weights不传参,训练就很慢了,大概测算需要多半个月。

基于预训练模型训练完后的日志,忘了保存,只有一部分:

  1. fork 5000 215 0.646 0.349 0.431 0.248
  2. knife 5000 325 0.516 0.206 0.223 0.111
  3. spoon 5000 253 0.54 0.19 0.229 0.117
  4. bowl 5000 623 0.616 0.475 0.516 0.356
  5. banana 5000 370 0.486 0.332 0.343 0.175
  6. apple 5000 236 0.433 0.275 0.219 0.138
  7. sandwich 5000 177 0.61 0.458 0.487 0.314
  8. orange 5000 285 0.492 0.373 0.349 0.255
  9. broccoli 5000 312 0.485 0.394 0.377 0.184
  10. carrot 5000 365 0.381 0.359 0.309 0.184
  11. hot dog 5000 125 0.62 0.472 0.477 0.31
  12. pizza 5000 284 0.712 0.634 0.668 0.455
  13. donut 5000 328 0.547 0.491 0.5 0.372
  14. cake 5000 310 0.618 0.439 0.508 0.31
  15. chair 5000 1771 0.596 0.404 0.451 0.257
  16. couch 5000 261 0.707 0.489 0.596 0.398
  17. potted plant 5000 342 0.564 0.415 0.435 0.235
  18. bed 5000 163 0.709 0.509 0.591 0.368
  19. dining table 5000 695 0.592 0.357 0.394 0.241
  20. toilet 5000 179 0.805 0.76 0.829 0.607
  21. tv 5000 288 0.758 0.664 0.735 0.521
  22. laptop 5000 231 0.765 0.649 0.706 0.538
  23. mouse 5000 106 0.804 0.708 0.762 0.543
  24. remote 5000 283 0.547 0.406 0.433 0.215
  25. keyboard 5000 153 0.652 0.575 0.658 0.423
  26. cell phone 5000 262 0.595 0.454 0.488 0.296
  27. microwave 5000 55 0.631 0.636 0.712 0.494
  28. oven 5000 143 0.626 0.448 0.535 0.304
  29. toaster 5000 9 0.793 0.333 0.515 0.355
  30. sink 5000 225 0.656 0.498 0.556 0.338
  31. refrigerator 5000 126 0.759 0.603 0.69 0.489
  32. book 5000 1129 0.455 0.181 0.219 0.0885
  33. clock 5000 267 0.777 0.704 0.735 0.471
  34. vase 5000 274 0.566 0.496 0.482 0.311
  35. scissors 5000 36 0.566 0.222 0.246 0.18
  36. teddy bear 5000 190 0.721 0.526 0.611 0.373
  37. hair drier 5000 11 1 0 0.0206 0.00303
  38. toothbrush 5000 57 0.529 0.298 0.344 0.19
  39. Evaluating pycocotools mAP... saving runs/train/exp/_predictions.json...
  40. loading annotations into memory...
  41. Done (t=0.53s)
  42. creating index...
  43. index created!
  44. Loading and preparing results...
  45. DONE (t=3.21s)
  46. creating index...
  47. index created!
  48. Running per image evaluation...
  49. Evaluate annotation type *bbox*
  50. DONE (t=41.97s).
  51. Accumulating evaluation results...
  52. DONE (t=6.99s).
  53. Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.372
  54. Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.566
  55. Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.402
  56. Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.209
  57. Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.422
  58. Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.477
  59. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.309
  60. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.514
  61. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.570
  62. Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.374
  63. Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.631
  64. Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.716
  65. Results saved to runs/train/exp

训练好的模型和结果在 从零训练yolov5在COCO数据集上的模型和结果-深度学习文档类资源-CSDN下载

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号