赞
踩
coco2017 80个类别
训练集118287 验证集 5000 测试集40670 一共163957
训练集中有117266被标注(每张图片有多个不同种类的目标) 验证集中有4952张被标注
yolov5默认开启混合精度训练:
- # Forward
- with torch.cuda.amp.autocast(amp):
- pred = model(imgs) # forward
- loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
- if RANK != -1:
- loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.
官方说的是在单卡V100显卡上大概训练s模型需要2天
我这里是单卡3090,如果是基于预训练模型训练,用时不到4天半,55个小时,但是从零训练应该不能基于预训练模型,如果weights不传参,训练就很慢了,大概测算需要多半个月。
基于预训练模型训练完后的日志,忘了保存,只有一部分:
- fork 5000 215 0.646 0.349 0.431 0.248
- knife 5000 325 0.516 0.206 0.223 0.111
- spoon 5000 253 0.54 0.19 0.229 0.117
- bowl 5000 623 0.616 0.475 0.516 0.356
- banana 5000 370 0.486 0.332 0.343 0.175
- apple 5000 236 0.433 0.275 0.219 0.138
- sandwich 5000 177 0.61 0.458 0.487 0.314
- orange 5000 285 0.492 0.373 0.349 0.255
- broccoli 5000 312 0.485 0.394 0.377 0.184
- carrot 5000 365 0.381 0.359 0.309 0.184
- hot dog 5000 125 0.62 0.472 0.477 0.31
- pizza 5000 284 0.712 0.634 0.668 0.455
- donut 5000 328 0.547 0.491 0.5 0.372
- cake 5000 310 0.618 0.439 0.508 0.31
- chair 5000 1771 0.596 0.404 0.451 0.257
- couch 5000 261 0.707 0.489 0.596 0.398
- potted plant 5000 342 0.564 0.415 0.435 0.235
- bed 5000 163 0.709 0.509 0.591 0.368
- dining table 5000 695 0.592 0.357 0.394 0.241
- toilet 5000 179 0.805 0.76 0.829 0.607
- tv 5000 288 0.758 0.664 0.735 0.521
- laptop 5000 231 0.765 0.649 0.706 0.538
- mouse 5000 106 0.804 0.708 0.762 0.543
- remote 5000 283 0.547 0.406 0.433 0.215
- keyboard 5000 153 0.652 0.575 0.658 0.423
- cell phone 5000 262 0.595 0.454 0.488 0.296
- microwave 5000 55 0.631 0.636 0.712 0.494
- oven 5000 143 0.626 0.448 0.535 0.304
- toaster 5000 9 0.793 0.333 0.515 0.355
- sink 5000 225 0.656 0.498 0.556 0.338
- refrigerator 5000 126 0.759 0.603 0.69 0.489
- book 5000 1129 0.455 0.181 0.219 0.0885
- clock 5000 267 0.777 0.704 0.735 0.471
- vase 5000 274 0.566 0.496 0.482 0.311
- scissors 5000 36 0.566 0.222 0.246 0.18
- teddy bear 5000 190 0.721 0.526 0.611 0.373
- hair drier 5000 11 1 0 0.0206 0.00303
- toothbrush 5000 57 0.529 0.298 0.344 0.19
-
- Evaluating pycocotools mAP... saving runs/train/exp/_predictions.json...
- loading annotations into memory...
- Done (t=0.53s)
- creating index...
- index created!
- Loading and preparing results...
- DONE (t=3.21s)
- creating index...
- index created!
- Running per image evaluation...
- Evaluate annotation type *bbox*
- DONE (t=41.97s).
- Accumulating evaluation results...
- DONE (t=6.99s).
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.372
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.566
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.402
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.209
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.422
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.477
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.309
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.514
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.570
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.374
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.631
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.716
- Results saved to runs/train/exp
训练好的模型和结果在 从零训练yolov5在COCO数据集上的模型和结果-深度学习文档类资源-CSDN下载
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。