当前位置:   article > 正文

pyspark 特征工程

pyspark 特征工程

重磅推荐专栏:
《大模型AIGC》
《课程大纲》
《知识星球》

本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展

曾经在15、16年那会儿使用Spark做机器学习,那时候pyspark并不成熟,做特征工程主要还是写scala。后来进入阿里工作,特征处理基本上使用PAI 可视化特征工程组件+ODPS SQL,复杂的话才会自己写python处理。最近重新学习了下pyspark,笔记下如何使用pyspark做特征工程。

我们使用movielens的数据进行,oneHotEncoder、multiHotEncoder和Numerical features的特征处理。

main

from pyspark import SparkConf
from pyspark.ml import Pipeline
from pyspark.ml.feature import OneHotEncoder, StringIndexer, QuantileDiscretizer, MinMaxScaler
from pyspark.ml.linalg import VectorUDT, Vectors
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
from pyspark.sql import functions as F

if __name__ == '__main__':
    conf = SparkConf().setAppName('featureEngineering').setMaster('local')
    spark = SparkSession.builder.config(conf=conf).getOrCreate()
    file_path = 'file:///资源文件夹路径'
    movieResourcesPath = file_path + "/webroot/sampledata/movies.csv"
    movieSamples = spark.read.format('csv').option('header', 'true').load(movieResourcesPath)
    print("Raw Movie Samples:")
    movieSamples.show(10)
    movieSamples.printSchema()
    print("OneHotEncoder Example:")
    oneHotEncoderExample(movieSamples)
    print("MultiHotEncoder Example:")
    multiHotEncoderExample(movieSamples)
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/988792
推荐阅读
相关标签
  

闽ICP备14008679号