当前位置:   article > 正文

目标跟踪DiMP: Learning Discriminative Model Prediction for Tracking

目标跟踪dimp

论文:DIMP: Learning Discriminative Model Prediction for Tracking
代码:https://github.com/visionml/pytracking

Results

先来看一下马丁的ICCV2019 Oral DIMP的结果:

DIMP-1857 FPSGTX-1080
DIMP-5043 FPSGTX-1080

VOT2018

在这里插入图片描述

LaSOT

在这里插入图片描述

TrackingNet(test)

在这里插入图片描述

GOT10k(test)

在这里插入图片描述

Nfs/OTB/UAV123

在这里插入图片描述
相比ATOM多了一个在GOT10k test上的结果,看来马丁还是很中意这几个评测数据集的。

Architecture

dimp主要强调了自己是一个具有端到端学习,并且可以在线更新的架构,因此并不像siamese系列只是计算一下模板和搜索区域的相关性,那样只利用了目标的外观信息,并没有利用背景信息。由此作者设计了一个discriminative learning的架构,经过几次的迭代就能预测一个有效的target model(因为tracking就是需要一种target-specific的信息)。这部分就类似ATOM里面的classification的部分,都是为了更好的区分target和distractor,如下图所示,而回归部分还是利用ATOM里面的IoU predictor,关于ATOM可看我上篇博客
在这里插入图片描述
那到底怎么快速预测一个包含有效前后背景信息的target model的呢?根据两个准则,作者设计了target classification branch:

  • A discriminative learning loss promoting robustness in the learned target model
  • a powerful optimization strategy ensuring rapid convergence
    在这里插入图片描述
  1. 这里与之前很多tracker训练的不同,这里送入训练的是图片 ( M t r a i n , M t e s t ) (M_{train},M_{test}) (Mtrain,Mtest),而 M = ( I j , b j ) j = 1 N f r a m e s M={(I_{j},b_{j})}_{j=1}^{N_{frames}} M=(Ij,bj)j=1Nframes又是 N f r a m e s N_{frames} Nframes张图片和bbox构成的,喂给由backbone和cls feat组成的Feature Extractor F F F提取特征,得到 ( S t r a i n , S t e s t ) (S_{train},S_{test}) (Strain,Stest),,包含有 S = ( x j , c j ) j = 1 n S={(x_{j},c_{j})}_{j=1}^{n} S=(xj,cj)j=1n深度特征 x j x_{j} xj和目标中心坐标 c j ∈ R 2 c_{j} \in \mathbb{R}^2 cjR2
  2. 我们可以看到下一步就是绿框Model Predictor D,其实就是学习一个比较有判别力的filter/weight,去和 S t e s t S_{test} Stest进行卷积相关,得到一个Score Prediction,因为 S t e s t S_{test} Stest模拟了未见过的帧,然后之后得到损失并更新也是用的Score Prediction。

Offiline training

先看一下总体的训练过程,重点关注一下需要优化的参数:

# Create network and actor
net = dimpnet.dimpnet50(filter_size=settings.target_filter_sz, backbone_pretrained=True, optim_iter=5,
                        clf_feat_norm=True, clf_feat_blocks=0, final_conv=True, out_feature_dim=512,
                        optim_init_step=0.9, optim_init_reg=0.1,
                        init_gauss_sigma=output_sigma * settings.feature_sz, num_dist_bins=100,
                        bin_displacement=0.1, mask_init_factor=3.0, target_mask_act='sigmoid', score_act='relu')

# Wrap the network for multi GPU training
if settings.multi_gpu:
    net = MultiGPU(net, dim=1)

objective = {'iou': nn.MSELoss(), 'test_clf': ltr_losses.LBHinge(threshold=settings.hinge_threshold)}

loss_weight = {'iou': 1, 'test_clf': 100, 'test_init_clf': 100, 'test_iter_clf': 400}

actor = actors.DiMPActor(net=net, objective=objective, loss_weight=loss_weight)

# Optimizer
optimizer = optim.Adam([{'params': actor.net.classifier.filter_initializer.parameters(), 'lr': 5e-5},
                        {'params': actor.net.classifier.filter_optimizer.parameters(), 'lr': 5e-4},
                        {'params': actor.net.classifier.feature_extractor.parameters(), 'lr': 5e-5},
                        {'params': actor.net.bb_regressor.parameters()},
                        {'params': actor.net.feature_extractor.parameters(), 'lr': 2e-5}],
                       lr=2e-4)

lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=15, gamma=0.2)

trainer = LTRTrainer(actor, [loader_train, loader_val], optimizer, settings, lr_scheduler)

trainer.train(50, load_latest=True, fail_safe=True)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

下面就在这部分讲一讲最关键的Model Predictor D中的步骤。
总体的流程就是用Model Initializer初始化一个Initial Model f ( 0 ) f^{(0)} f(0),然后送入Model Optimizer来Update Model f ( i ) f^{(i)} f(i),经过 N i t e r N_{iter} Niter次迭代过后得到Final Model f f f,在这几次内部迭代过程中,以 L ( f ) = 1 ∣ S train  ∣ ∑ ( x , c ) ∈ S train  ∥ r ( x ∗ f , c ) ∥ 2 + ∥ λ f ∥ 2 (1) L(f)=\frac{1}{\left|S_{\text {train }}\right|} \sum_{(x, c) \in S_{\text {train }}}\|r(x * f, c)\|^{2}+\|\lambda f\|^{2} \tag{1} L(f)=Strain 1(x,c)Strain r(xf,c)2+λf2(1)

r ( s , c ) = v c ⋅ ( m c s + ( 1 − m c ) max ⁡ ( 0 , s ) − y c ) (2) r(s, c)=v_{c} \cdot\left(m_{c} s+\left(1-m_{c}\right) \max (0, s)-y_{c}\right) \tag{2} r(s,c)=vc(mcs+(1mc)max(0,s)yc)(2)
为损失函数来指导我们的优化过程,其中 m c m_{c} mc是介于[0,1]之间的target_mask的一个map, v c v_{c} vc是起到空间不同位置赋予权重的spatial weight的一个map, y c y_{c} yc是目标的一个map,下面是他们的一个可视化图,最重要的一点就是他们都是可学习的【下面还要说,其实没什么,就是一层卷积层的输出;其实 m c s + ( 1 − m c ) max ⁡ ( 0 , s ) m_{c} s+\left(1-m_{c}\right) \max (0, s) mcs+(1mc)max(0,s)用一个LeakyReLU函数就能实现】
在这里插入图片描述
因为普通的梯度下降法收敛慢,因为步长是固定的,所以选择每步都“走到底”的最速下降法(steepest descent),也就是变步长的:
f ( i + 1 ) = f ( i ) − α ∇ L ( f ( i ) ) (3) f^{(i+1)}=f^{(i)}-\alpha \nabla L\left(f^{(i)}\right) \tag{3} f(i+1)=f(i)αL(f(i))(3)损失函数可以用二次泰勒展开来拟合,但是这是高维函数,所以可以用下面的标准型来展开,其中 Q ( i ) Q^{(i)} Q(i)是对称正定矩阵
L ( f ) ≈ L ~ ( f ) = 1 2 ( f − f ( i ) ) T Q ( i ) ( f − f ( i ) ) + ( f − f ( i ) ) T ∇ L ( f ( i ) ) + L ( f ( i ) ) (4)

L(f)L~(f)=12(ff(i))TQ(i)(ff(i))+(ff(i))TL(f(i))+L(f(i))
\tag{4} L(f)L~(f)=21(ff(i))TQ(i)(ff(i))+(ff(i))TL(f(i))+L(f(i))(4)在确定迭代方向为负梯度方向的前提上,需要确定在该方向上使得函数值最小的迭代步长 α \alpha α,这就是最速下降法和梯度下降法的区别所在,我们求导一下,可以得到:
α = ∇ L ( f ( i ) ) T ∇ L ( f ( i ) ) ∇ L ( f ( i ) ) T Q ( i ) ∇ L ( f ( i ) ) (5) \alpha=\frac{\nabla L\left(f^{(i)}\right)^{\mathrm{T}} \nabla L\left(f^{(i)}\right)}{\nabla L\left(f^{(i)}\right)^{\mathrm{T}} Q^{(i)} \nabla L\left(f^{(i)}\right)} \tag{5} α=L(f(i))TQ(i)L(f(i))L(f(i))TL(f(i))(5)因为最普通的 Q ( i ) Q^{(i)} Q(i)就是二阶泰勒标准展开中的海森矩阵(Hessian matrix),但涉及二次导,所以实际编程时用一阶导代替: Q ( i ) = ( J ( i ) ) T J ( i ) Q^{(i)}=\left(J^{(i)}\right)^{\mathrm{T}} J^{(i)} Q(i)=(J(i))TJ(i)

其实到这里也就可以进行Model Optimizer的优化过程了,但是如果要输出损失L的话还是得计算一下的,这里也涉及到具体 m c m_{c} mc v c v_{c} vc y c y_{c} yc是怎么设计的:因为他们这些mask都是径向对称的,更重要的不是角度位置,而是与目标中心的distance大小,所以用下面这样的径向基函数去生成distance map ρ k \rho_{k} ρk N = 100 N=100 N=100 Δ = 0.1 \Delta=0.1 Δ=0.1你可以想象成一个100个channel的feature_sz×feature_sz大小的map
ρ k ( d ) = { max ⁡ ( 0 , 1 − ∣ d − k Δ ∣ Δ ) , k < N − 1 max ⁡ ( 0 , min ⁡ ( 1 , 1 + d − k Δ Δ ) ) , k = N − 1 (6) \rho_{k}(d)=\left\{

max(0,1|dkΔ|Δ),max(0,min(1,1+dkΔΔ)),k<N1k=N1
\right. \tag{6} ρk(d)={max(0,1ΔdkΔ),max(0,min(1,1+ΔdkΔ)),k<N1k=N1(6)然后用这些distance map去加权求和形成 m c m_{c} mc v c v_{c} vc y c y_{c} yc。这里的 ϕ k \phi_{k} ϕk其实就是nn.Conv2d(100, 1)的一层卷积层,可以学习就体现在这里。
y c ( t ) = ∑ k = 0 N − 1 ϕ k y ρ k ( ∥ t − c ∥ ) (7) y_{c}(t)=\sum_{k=0}^{N-1} \phi_{k}^{y} \rho_{k}(\|t-c\|) \tag{7} yc(t)=k=0N1ϕkyρk(tc)(7)其实到这里才是Model Predictor D的结束,下面就是用最后一次优化生成的Final Model f f f S t e s t S_{test} Stest卷积得到Score Prediction,也就是下面的 s 或 者 x ∗ f ( i ) s或者x * f^{(i)} sxf(i)

ℓ ( s , z ) = { s − z , z > T max ⁡ ( 0 , s ) , z ≤ T (8) \ell(s, z)=\left\{

sz,max(0,s),z>TzT
\right. \tag{8} (s,z)={sz,max(0,s),z>TzT(8) z c z_{c} zc是以目标中心撒的高斯标签,这里用label confidence value设定一个阈值 T T T,大于的认为是目标区域,小于的认为是背景区域,实现不同的损失,下面的分类损失 L c l s L_{\mathrm{cls}} Lcls是在 S t e s t S_{test} Stest上的
L c l s = 1 N iter  ∑ i = 0 N iter  ∑ ( x , c ) ∈ S test  ∥ ℓ ( x ∗ f ( i ) , z c ) ∥ 2 (9) L_{\mathrm{cls}}=\frac{1}{N_{\text {iter }}} \sum_{i=0}^{N_{\text {iter }}} \sum_{(x, c) \in S_{\text {test }}}\left\|\ell\left(x * f^{(i)}, z_{c}\right)\right\|^{2} \tag{9} Lcls=Niter 1i=0Niter (x,c)Stest (xf(i),zc)2(9)然后加上target estimate,也就是IoU predictor分支的回归损失 L b b L_{\mathrm{bb}} Lbb 就是总损失了 L t o t = β L c l s + L b b L_{\mathrm{tot}}=\beta L_{\mathrm{cls}}+L_{\mathrm{bb}} Ltot=βLcls+Lbb
归纳一下Target model predictor D部分的优化迭代过程就是这样的: 
在这里插入图片描述
所以在整个的离线训练阶段,就相当于有两个loop,一个小loop就是用train set来优化Model Predictor D,大loop就是用test set来优化整个网络中需要优化的参数。
算法1在代码里面主要对应的就是pytracking/ltr/models/target_classifier/optimizer.py

for i in range(num_iter):
    if not backprop_through_learning or (i > 0 and i % self.detach_length == 0):
        weights = weights.detach()

    # Compute residuals
    scores = filter_layer.apply_filter(feat, weights) # torch.Size([3, batch, 19, 19])
    scores_act = self.score_activation(scores, target_mask) # latter is slope
    score_mask = self.score_activation_deriv(scores, target_mask)
    residuals = sample_weight * (scores_act - label_map) # Formula(2) in paper torch.Size([3, batch, 19, 19])

    if compute_losses:
        losses.append(((residuals**2).sum() + reg_weight * (weights**2).sum())/num_sequences)

    # Compute gradient
    residuals_mapped = score_mask * (sample_weight * residuals)  # 这其实就是Loss传回到score的梯度 torch.Size([3, batch, 19, 19])
    weights_grad = filter_layer.apply_feat_transpose(feat, residuals_mapped, filter_sz, training=self.training) + \
                  reg_weight * weights  # [batch, 512, 4, 4]

    # Map the gradient with the Jacobian
    scores_grad = filter_layer.apply_filter(feat, weights_grad)
    scores_grad = sample_weight * (score_mask * scores_grad)

    # Compute optimal step length
    alpha_num = (weights_grad * weights_grad).sum(dim=(1,2,3)) # [batch, 512, 4, 4] -> [batch,]
    alpha_den = ((scores_grad * scores_grad).reshape(num_images, num_sequences, -1).sum(dim=(0,2)) + (reg_weight + self.alpha_eps) * alpha_num).clamp(1e-8)
    alpha = alpha_num / alpha_den  # numerator / denominator

    # Update filter
    weights = weights - (step_length_factor * alpha.reshape(-1, 1, 1, 1)) * weights_grad

    # Add the weight iterate
    weight_iterates.append(weights)

if compute_losses:
    scores = filter_layer.apply_filter(feat, weights)
    scores = self.score_activation(scores, target_mask)
    losses.append((((sample_weight * (scores - label_map))**2).sum() + reg_weight * (weights**2).sum())/num_sequences)

return weights, weight_iterates, losses
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

Online tracking

在这里插入图片描述
代码里面关键的部分pytracking/pytracking/tracker/dimp/dimp.py

  • initialize:
# Extract and transform sample 15 samples
init_backbone_feat = self.generate_init_samples(im)

# Initialize classifier
self.init_classifier(init_backbone_feat)
  • 1
  • 2
  • 3
  • 4
  • 5

在init_classifier函数中会进行10 steepest descent recursions

# Get target filter by running the discriminative model prediction module
# params.net_opt_iter = 10
with torch.no_grad():
    self.target_filter, _, losses = self.net.classifier.get_filter(x, target_boxes, num_iter=num_iter,
                                                                   compute_losses=plot_loss)
  • 1
  • 2
  • 3
  • 4
  • 5

并且会初始化一个memory,如论文中所说:We ensure a maximum memory size of 50 by discarding the oldest sample

# Initialize memory params.sample_memory_size = 50
self.training_samples = TensorList(
    [x.new_zeros(self.params.sample_memory_size, x.shape[1], x.shape[2], x.shape[3]) for x in train_x])
  • 1
  • 2
  • 3
  • track:
# Extract backbone features
backbone_feat, sample_coords, im_patches = self.extract_backbone_features(im, self.get_centered_sample_pos(),
                                                              self.target_scale * self.params.scale_factors,
                                                              self.img_sample_sz)
# Extract classification features
test_x = self.get_classification_features(backbone_feat)

# Location of sample
sample_pos, sample_scales = self.get_sample_location(sample_coords)

# Compute classification scores
scores_raw = self.classify_target(test_x)

# Localize the target
translation_vec, scale_ind, s, flag = self.localize_target(scores_raw, sample_pos, sample_scales)
new_pos = sample_pos[scale_ind,:] + translation_vec

# Update position and scale
if flag != 'not_found':
    if self.params.get('use_iou_net', True):
        update_scale_flag = self.params.get('update_scale_when_uncertain', True) or flag != 'uncertain'
        if self.params.get('use_classifier', True):
            self.update_state(new_pos)
        # as ATOM, use IoU predictor
        self.refine_target_box(backbone_feat, sample_pos[scale_ind,:], sample_scales[scale_ind], scale_ind, update_scale_flag)
    elif self.params.get('use_classifier', True):
        self.update_state(new_pos, sample_scales[scale_ind])


# ------- UPDATE ------- #
if update_flag and self.params.get('update_classifier', False):
    # Get train sample
    train_x = test_x[scale_ind:scale_ind+1, ...]

    # Create target_box and label for spatial sample
    target_box = self.get_iounet_box(self.pos, self.target_sz, sample_pos[scale_ind,:], sample_scales[scale_ind])

    # Update the classifier model
    self.update_classifier(train_x, target_box, learning_rate, s[scale_ind,...])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

Bonus

讲解视频链接:https://www.bilibili.com/video/BV1H54y167rG

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/码创造者/article/detail/1010530
推荐阅读
相关标签
  

闽ICP备14008679号