赞
踩
model.py:
- #!/usr/bin/python
- # -*- coding: utf-8 -*-
-
- import torch
- from torch import nn
- import numpy as np
- from torch.autograd import Variable
- import torch.nn.functional as F
-
- class TextRNN(nn.Module):
- """文本分类,RNN模型"""
- def __init__(self):
- super(TextRNN, self).__init__()
- # 三个待输入的数据
- self.embedding = nn.Embedding(5000, 64) # 进行词嵌入
- # self.rnn = nn.LSTM(input_size=64, hidden_size=128, num_layers=2, bidirectional=True)
- self.rnn = nn.GRU(input_size=64, hidden_size=128, num_layers=2, bidirectional=True)
- self.f1 = nn.Sequential(nn.Linear(256,128),
- nn.Dropout(0.8),
- nn.ReLU())
- self.f2 = nn.Sequential(nn.Linear(128,10),
- nn.Softmax())
-
- def forward(self, x):
- x = self.embedding(x)
- x,_ = self.rnn(x)
- x = F.dropout(x,p=0.8)
- x = self.f1(x[:,-1,:])
- return self.f2(x)
-
- class TextCNN(nn.Module):
- def __init__(self):
- super(TextCNN, self).__init__()
- self.embedding = nn.Embedding(5000,64)
- self.conv = nn.Conv1d(64,256,5)
- self.f1 = nn.Sequential(nn.Linear(256*596, 128),
- nn.ReLU())
- self.f2 = nn.Sequential(nn.Linear(128, 10),
- nn.Softmax())
- def forward(self, x):
- x = self.embedding(x)
- x = x.detach().numpy()
- x = np.transpose(x,[0,2,1])
- x = torch.Tensor(x)
- x = Variable(x)
- x = self.conv(x)
- x = x.view(-1,256*596)
- x = self.f1(x)
- return self.f2(x)
train.py:
- # coding: utf-8
-
- from __future__ import print_function
- import torch
- from torch import nn
- from torch import optim
- from torch.autograd import Variable
- import os
-
- import numpy as np
-
- from model import TextRNN,TextCNN
- from cnews_loader import read_vocab, read_category, batch_iter, process_file, build_vocab
-
- base_dir = 'cnews'
- train_dir = os.path.join(base_dir, 'cnews.train.txt')
- test_dir = os.path.join(base_dir, 'cnews.test.txt')
- val_dir = os.path.join(base_dir, 'cnews.val.txt')
- vocab_dir = os.path.join(base_dir, 'cnews.vocab.txt')
-
-
- def train():
- x_train, y_train = process_file(train_dir, word_to_id, cat_to_id,600)#获取训练数据每个字的id和对应标签的oe-hot形式
- x_val, y_val = process_file(val_dir, word_to_id, cat_to_id,600)
- #使用LSTM或者CNN
- model = TextRNN()
- # model = TextCNN()
- #选择损失函数
- Loss = nn.MultiLabelSoftMarginLoss()
- # Loss = nn.BCELoss()
- # Loss = nn.MSELoss()
- optimizer = optim.Adam(model.parameters(),lr=0.001)
- best_val_acc = 0
- for epoch in range(1000):
- batch_train = batch_iter(x_train, y_train,100)
- for x_batch, y_batch in batch_train:
- x = np.array(x_batch)
- y = np.array(y_batch)
- x = torch.LongTensor(x)
- y = torch.Tensor(y)
- # y = torch.LongTensor(y)
- x = Variable(x)
- y = Variable(y)
- out = model(x)
- loss = Loss(out,y)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- accracy = np.mean((torch.argmax(out,1)==torch.argmax(y,1)).numpy())
- #对模型进行验证
- if (epoch+1)%20 == 0:
- batch_val = batch_iter(x_val, y_val, 100)
- for x_batch, y_batch in batch_train:
- x = np.array(x_batch)
- y = np.array(y_batch)
- x = torch.LongTensor(x)
- y = torch.Tensor(y)
- # y = torch.LongTensor(y)
- x = Variable(x)
- y = Variable(y)
- out = model(x)
- loss = Loss(out, y)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- accracy = np.mean((torch.argmax(out, 1) == torch.argmax(y, 1)).numpy())
- if accracy > best_val_acc:
- torch.save(model.state_dict(),'model_params.pkl')
- best_val_acc = accracy
- print(accracy)
-
- if __name__ == '__main__':
- #获取文本的类别及其对应id的字典
- categories, cat_to_id = read_category()
- #获取训练文本中所有出现过的字及其所对应的id
- words, word_to_id = read_vocab(vocab_dir)
- #获取字数
- vocab_size = len(words)
- train()
test.py:
- # coding: utf-8
-
- from __future__ import print_function
-
- import os
- import tensorflow.contrib.keras as kr
- import torch
- from torch import nn
- from cnews_loader import read_category, read_vocab
- from model import TextRNN
- from torch.autograd import Variable
- import numpy as np
- try:
- bool(type(unicode))
- except NameError:
- unicode = str
-
- base_dir = 'cnews'
- vocab_dir = os.path.join(base_dir, 'cnews.vocab.txt')
-
- class TextCNN(nn.Module):
- def __init__(self):
- super(TextCNN, self).__init__()
- self.embedding = nn.Embedding(5000,64)
- self.conv = nn.Conv1d(64,256,5)
- self.f1 = nn.Sequential(nn.Linear(152576, 128),
- nn.ReLU())
- self.f2 = nn.Sequential(nn.Linear(128, 10),
- nn.Softmax())
- def forward(self, x):
- x = self.embedding(x)
- x = x.detach().numpy()
- x = np.transpose(x,[0,2,1])
- x = torch.Tensor(x)
- x = Variable(x)
- x = self.conv(x)
- x = x.view(-1,152576)
- x = self.f1(x)
- return self.f2(x)
-
- class CnnModel:
- def __init__(self):
- self.categories, self.cat_to_id = read_category()
- self.words, self.word_to_id = read_vocab(vocab_dir)
- self.model = TextCNN()
- self.model.load_state_dict(torch.load('model_params.pkl'))
-
- def predict(self, message):
- # 支持不论在python2还是python3下训练的模型都可以在2或者3的环境下运行
- content = unicode(message)
- data = [self.word_to_id[x] for x in content if x in self.word_to_id]
- data = kr.preprocessing.sequence.pad_sequences([data],600)
- data = torch.LongTensor(data)
- y_pred_cls = self.model(data)
- class_index = torch.argmax(y_pred_cls[0]).item()
- return self.categories[class_index]
-
- class RnnModel:
- def __init__(self):
- self.categories, self.cat_to_id = read_category()
- self.words, self.word_to_id = read_vocab(vocab_dir)
- self.model = TextRNN()
- self.model.load_state_dict(torch.load('model_rnn_params.pkl'))
-
- def predict(self, message):
- # 支持不论在python2还是python3下训练的模型都可以在2或者3的环境下运行
- content = unicode(message)
- data = [self.word_to_id[x] for x in content if x in self.word_to_id]
- data = kr.preprocessing.sequence.pad_sequences([data], 600)
- data = torch.LongTensor(data)
- y_pred_cls = self.model(data)
- class_index = torch.argmax(y_pred_cls[0]).item()
- return self.categories[class_index]
-
-
- if __name__ == '__main__':
- model = CnnModel()
- # model = RnnModel()
- test_demo = ['湖人助教力助科比恢复手感 他也是阿泰的精神导师新浪体育讯记者戴高乐报道 上赛季,科比的右手食指遭遇重创,他的投篮手感也因此大受影响。不过很快科比就调整了自己的投篮手型,并通过这一方式让自己的投篮命中率回升。而在这科比背后,有一位特别助教对科比帮助很大,他就是查克·珀森。珀森上赛季担任湖人的特别助教,除了帮助科比调整投篮手型之外,他的另一个重要任务就是担任阿泰的精神导师。来到湖人队之后,阿泰收敛起了暴躁的脾气,成为湖人夺冠路上不可或缺的一员,珀森的“心灵按摩”功不可没。经历了上赛季的成功之后,珀森本赛季被“升职”成为湖人队的全职助教,每场比赛,他都会坐在球场边,帮助禅师杰克逊一起指挥湖人球员在场上拼杀。对于珀森的工作,禅师非常欣赏,“查克非常善于分析问题,”菲尔·杰克逊说,“他总是在寻找问题的答案,同时也在找造成这一问题的原因,这是我们都非常乐于看到的。我会在平时把防守中出现的一些问题交给他,然后他会通过组织球员练习找到解决的办法。他在球员时代曾是一名很好的外线投手,不过现在他与内线球员的配合也相当不错。',
- '弗老大被裁美国媒体看热闹“特权”在中国像蠢蛋弗老大要走了。虽然他只在首钢男篮效力了13天,而且表现毫无亮点,大大地让球迷和俱乐部失望了,但就像中国人常说的“好聚好散”,队友还是友好地与他告别,俱乐部与他和平分手,球迷还请他留下了在北京的最后一次签名。相比之下,弗老大的同胞美国人却没那么“宽容”。他们嘲讽这位NBA前巨星的英雄迟暮,批评他在CBA的业余表现,还惊讶于中国人的“大方”。今天,北京首钢俱乐部将与弗朗西斯继续商讨解约一事。从昨日的进展来看,双方可以做到“买卖不成人意在”,但回到美国后,恐怕等待弗朗西斯的就没有这么轻松的环境了。进展@北京昨日与队友告别 最后一次为球迷签名弗朗西斯在13天里为首钢队打了4场比赛,3场的得分为0,只有一场得了2分。昨天是他来到北京的第14天,虽然他与首钢还未正式解约,但双方都明白“缘分已尽”。下午,弗朗西斯来到首钢俱乐部与队友们告别。弗朗西斯走到队友身边,依次与他们握手拥抱。“你们都对我很好,安排的条件也很好,我很喜欢这支球队,想融入你们,但我现在真的很不适应。希望你们']
- for i in test_demo:
- print(i,":",model.predict(i))
cnews_loader.py:
- # coding: utf-8
-
- import sys
- from collections import Counter
-
- import numpy as np
- import tensorflow.contrib.keras as kr
-
- if sys.version_info[0] > 2:
- is_py3 = True
- else:
- reload(sys)
- sys.setdefaultencoding("utf-8")
- is_py3 = False
-
-
- def native_word(word, encoding='utf-8'):
- """如果在python2下面使用python3训练的模型,可考虑调用此函数转化一下字符编码"""
- if not is_py3:
- return word.encode(encoding)
- else:
- return word
-
-
- def native_content(content):
- if not is_py3:
- return content.decode('utf-8')
- else:
- return content
-
-
- def open_file(filename, mode='r'):
- """
- 常用文件操作,可在python2和python3间切换.
- mode: 'r' or 'w' for read or write
- """
- if is_py3:
- return open(filename, mode, encoding='utf-8', errors='ignore')
- else:
- return open(filename, mode)
-
-
- def read_file(filename):
- """读取文件数据"""
- contents, labels = [], []
- with open_file(filename) as f:
- for line in f:
- try:
- label, content = line.strip().split('\t')
- if content:
- contents.append(list(native_content(content)))
- labels.append(native_content(label))
- except:
- pass
- return contents, labels
-
-
- def build_vocab(train_dir, vocab_dir, vocab_size=5000):
- """根据训练集构建词汇表,存储"""
- data_train, _ = read_file(train_dir)
-
- all_data = []
- for content in data_train:
- all_data.extend(content)
-
- counter = Counter(all_data)
- count_pairs = counter.most_common(vocab_size - 1)
- words, _ = list(zip(*count_pairs))
- # 添加一个 <PAD> 来将所有文本pad为同一长度
- words = ['<PAD>'] + list(words)
- open_file(vocab_dir, mode='w').write('\n'.join(words) + '\n')
-
-
- def read_vocab(vocab_dir):
- """读取词汇表"""
- # words = open_file(vocab_dir).read().strip().split('\n')
- with open_file(vocab_dir) as fp:
- # 如果是py2 则每个值都转化为unicode
- words = [native_content(_.strip()) for _ in fp.readlines()]
- word_to_id = dict(zip(words, range(len(words))))
- return words, word_to_id
-
-
- def read_category():
- """读取分类目录,固定"""
- categories = ['体育', '财经', '房产', '家居', '教育', '科技', '时尚', '时政', '游戏', '娱乐']
-
- categories = [native_content(x) for x in categories]
-
- cat_to_id = dict(zip(categories, range(len(categories))))
-
- return categories, cat_to_id
-
-
- def to_words(content, words):
- """将id表示的内容转换为文字"""
- return ''.join(words[x] for x in content)
-
-
- def process_file(filename, word_to_id, cat_to_id, max_length=600):
- """将文件转换为id表示"""
- contents, labels = read_file(filename)#读取训练数据的每一句话及其所对应的类别
- data_id, label_id = [], []
- for i in range(len(contents)):
- data_id.append([word_to_id[x] for x in contents[i] if x in word_to_id])#将每句话id化
- label_id.append(cat_to_id[labels[i]])#每句话对应的类别的id
- #
- # # 使用keras提供的pad_sequences来将文本pad为固定长度
- x_pad = kr.preprocessing.sequence.pad_sequences(data_id, max_length)
- y_pad = kr.utils.to_categorical(label_id, num_classes=len(cat_to_id)) # 将标签转换为one-hot表示
- #
- return x_pad, y_pad
-
-
- def batch_iter(x, y, batch_size=64):
- """生成批次数据"""
- data_len = len(x)
- num_batch = int((data_len - 1) / batch_size) + 1
-
- indices = np.random.permutation(np.arange(data_len))
- x_shuffle = x[indices]
- y_shuffle = y[indices]
-
- for i in range(num_batch):
- start_id = i * batch_size
- end_id = min((i + 1) * batch_size, data_len)
- yield x_shuffle[start_id:end_id], y_shuffle[start_id:end_id]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。