赞
踩
- #include <iostream>
- #include <opencv2/opencv.hpp>
-
- int main() {
- // Load pre-trained MobileNet SSD model and configuration
- std::string model = "path_to_mobilenet_iter_73000.caffemodel";
- std::string config = "path_to_deploy.prototxt";
- cv::dnn::Net net = cv::dnn::readNetFromCaffe(config, model);
-
- // Use webcam for real-time detection
- cv::VideoCapture cap(0);
- if (!cap.isOpened()) {
- std::cerr << "Error: Couldn't open the webcam." << std::endl;
- return -1;
- }
-
- while (true) {
- cv::Mat frame;
- cap >> frame;
-
- // Prepare the frame for the neural network
- cv::Mat blob = cv::dnn::blobFromImage(frame, 0.007843, cv::Size(300, 300), 127.5);
- net.setInput(blob);
-
- // Forward pass
- cv::Mat detection = net.forward();
-
- // Process the detection
- for (int i = 0; i < detection.size[2]; i++) {
- float confidence = detection.at<float>(0, 0, i, 2);
- if (confidence > 0.2) { // Threshold for confidence
- int classId = static_cast<int>(detection.at<float>(0, 0, i, 1));
- int left = static_cast<int>(detection.at<float>(0, 0, i, 3) * frame.cols);
- int top = static_cast<int>(detection.at<float>(0, 0, i, 4) * frame.rows);
- int right = static_cast<int>(detection.at<float>(0, 0, i, 5) * frame.cols);
- int bottom = static_cast<int>(detection.at<float>(0, 0, i, 6) * frame.rows);
-
- // Draw bounding box for detected object
- cv::rectangle(frame, cv::Point(left, top), cv::Point(right, bottom), cv::Scalar(0, 255, 0), 2);
- }
- }
-
- // Display the frame with detections
- cv::imshow("Real-time Object Detection", frame);
-
- // Exit on pressing 'q'
- if (cv::waitKey(1) == 'q') break;
- }
-
- cap.release();
- cv::destroyAllWindows();
-
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。