赞
踩
一,下载训练工具labelimg
打开Anaconda,下载labelimg 如图:
二,准备自己要标注的数据集
1,在yolov5-master文件夹里面的data文件里面创建一个images文件夹,将自己要标注的数据集放入其中 如图:
2,再在data文件夹下面创建dataset文件夹用于存放打好标签后的数据,labels文件夹用于存放数据标签 如图:
三,标注
1,在Anaconda输入labelimg打开labelimg,然后将点击左上角View里面的Auto 设置为自动保存 如图:
2,点击Open Dir 将路径设置为Data里的image 如图:
3,点击Change Save Dir 将路径设置为data下的dataset 如图:
4,通过Create RectBox对图像进行标注 标注时注意要与图像四周相切 训练效果才能够好 labelimg里面标注名称 如图:
完成以上操作 数据集就算是标注好了 可以在dataset文件夹进行查看
四,数据处理标注代码
1.在python工程文件夹yolov5-master下面创建spilt.py 程序,并且写入下列代码rut
- import os
- import random
- import argparse
- parser = argparse.ArgumentParser()
- parser.add_argument('--xml_path', default='data/dataset', type=str, help='input xml label path')
- parser.add_argument('--txt_path', default='data/labels', type=str, help='output txt label path')
- opt = parser.parse_args()
- trainval_percent = 1.0
- train_percent = 0.8
- xmlfilepath = opt.xml_path
- txtsavepath = opt.txt_path
- total_xml = os.listdir(xmlfilepath)
- if not os.path.exists(txtsavepath):
- os.makedirs(txtsavepath)
- num = len(total_xml)
- list_index = range(num)
- tv = int(num * trainval_percent)
- tr = int(tv * train_percent)
- trainval = random.sample(list_index, tv)
- train = random.sample(trainval, tr)
- file_trainval = open(txtsavepath + '/trainval.txt', 'w')
- file_test = open(txtsavepath + '/test.txt', 'w')
- file_train = open(txtsavepath + '/train.txt', 'w')
- file_val = open(txtsavepath + '/val.txt', 'w')
- for i in list_index:
- name = total_xml[i][:-4] + '\n'
- if i in trainval:
- file_trainval.write(name)
- if i in train:
- file_train.write(name)
- else:
- file_val.write(name)
- else:
- file_test.write(name)
- file_trainval.close()
- file_train.close()
- file_val.close()
- file_test.close()
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
如图:2,运行代码就可以看到在labels文件下面出现四个.txt文件 如图:
3,在yolov5-master下创建一个xml_to_txt.py程序 输入下列代码,运行完后labels文件里面就会出现运行好的txt文件如图:
- import xml.etree.ElementTree as ET
- from tqdm import tqdm
- import os
- from os import getcwd
-
- sets = ['train', 'val', 'test']
- classes = ['panda'] # 这里改为你要训练的标签,否则会报错。比如你要识别“hand”,那这里就改为hand
-
-
- def convert(size, box):
- dw = 1. / (size[0])
- dh = 1. / (size[1])
- x = (box[0] + box[1]) / 2.0 - 1
- y = (box[2] + box[3]) / 2.0 - 1
- w = box[1] - box[0]
- h = box[3] - box[2]
- x = x * dw
- w = w * dw
- y = y * dh
- h = h * dh
- return x, y, w, h
-
-
- def convert_annotation(image_id):
- # try:
- in_file = open('data/dataset/%s.xml' % (image_id), encoding='utf-8')
- out_file = open('data/labels/%s.txt' % (image_id), 'w', encoding='utf-8')
- tree = ET.parse(in_file)
- root = tree.getroot()
- size = root.find('size')
- w = int(size.find('width').text)
- h = int(size.find('height').text)
- for obj in root.iter('object'):
- difficult = obj.find('difficult').text
- cls = obj.find('name').text
- if cls not in classes or int(difficult) == 1:
- continue
- cls_id = classes.index(cls)
- xmlbox = obj.find('bndbox')
- b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
- float(xmlbox.find('ymax').text))
- b1, b2, b3, b4 = b
- # 标注越界修正
- if b2 > w:
- b2 = w
- if b4 > h:
- b4 = h
- b = (b1, b2, b3, b4)
- bb = convert((w, h), b)
- out_file.write(str(cls_id) + " " +
- " ".join([str(a) for a in bb]) + '\n')
-
-
- # except Exception as e:
- # print(e, image_id)
-
- wd = getcwd()
- for image_set in sets:
- if not os.path.exists('data/labels/'):
- os.makedirs('data/labels/')
- image_ids = open('data/labels/%s.txt' %
- (image_set)).read().strip().split()
- list_file = open('data/%s.txt' % (image_set), 'w')
- for image_id in tqdm(image_ids):
- list_file.write('data/images/%s.jpg\n' % (image_id))
- convert_annotation(image_id)
- list_file.close()
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
4,随后在data文件里面创建一个myvoc.yaml文件 并且输入下列代码 应为我这里只训练了一类数据 所以nc:1 如图
- train: data/train.txt
- val: date/val.txt
- nc: 1
- names: ["panda"]
5,最后修改models文件里面的yolov5s.yaml里面的nc:1 如图:
五,训练
1,在Anaconda里面修改到自己的路径下面如图:
2输入python train.py --epoch 300 --batch 4 --data ./data/myvoc.yaml --cfg ./models/yolov5s.yaml --weight ./weights/yolov5s.pt --workers 0进行训练即可
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。