效果:
分析:
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
version_0
声明:未经许可,不能作为商业用途
总结:通过//div[@class="xxx"]可能取到的数据是不全面的,这时候不妨考虑使用//div[contains(@calss,'xxx')]的方式来提取
如果通过re模块去提取数据,在首页(book.dangdang.com/index)取获取分类信息的时候,会提示errordecode,
这是因为当当图书在网页中插入了别国字符导致编码不统一的问题。
当当网在获取图书信息,翻页时,未采用任何动态技术,通过价格也是直接嵌入在网页上的,这个就比较容易获取到。
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
源码
- # -*- coding: utf-8 -*-
- import scrapy
- import re
- from copy import deepcopy
- from pprint import pprint
- from urllib import parse
-
-
- class DdtsSpider(scrapy.Spider):
- name = 'ddts'
- allowed_domains = ['dangdang.com']
- start_urls = ['http://book.dangdang.com/index']
-
- def process_info(self,con_list):
- """传入一个列表,处理空字符串并将字段拼接在一起"""
- con_list = [re.sub(r"\s|\n", '', i).strip() for i in con_list if i]
- s = str()
- for a_ in con_list:
- s += a_
- return s
-
- def parse(self, response):
- div_cate_list = response.xpath("//div[@class='con flq_body']//div[contains(@class,'level_one')]")
- # 去掉空字符串,去掉当当出版
- div_cate_list = div_cate_list[2:13]+div_cate_list[14:-4]
- for div_cate in div_cate_list:
- item = dict()
- # 获取大分类标题
- # 提取标题部分
- item["b_cate"] = div_cate.xpath(".//dl[contains(@class,'primary_dl')]/dt//text()").extract()
- item["b_cate"] = self.process_info(item["b_cate"])
- # 拿到所有弹出层列表
- t_list = div_cate.xpath(".//dl[contains(@class,'inner_dl')]")
- for t in t_list:
- # 获取中级标题
- item["m_cate"] = t.xpath(".//dt//text()").extract()
- item["m_cate"] = self.process_info(item["m_cate"])
- # 获取小分类及地址
- a_list = t.xpath(".//dd/a")
- for a in a_list:
- item["s_cate"] = a.xpath("./text()").extract()
- item["s_cate"] = self.process_info(item["s_cate"])
- s_href = a.xpath("./@href").extract_first()
- # 请求小分类的地址
- yield scrapy.Request(
- url = s_href,
- callback=self.parse_s_cate,
- meta={"item":deepcopy(item)}
- )
-
- def parse_s_cate(self,response):
- item = deepcopy(response.meta["item"])
- # 选取图书列表
- book_li_list = response.xpath("//div[contains(@id,'search_nature_rg')]/ul[contains(@class,'bigimg')]/li")
- # 当前请求的url包含该页面下所有的请求,无任何动态加载
- for book_li in book_li_list:
- book_info = dict()
- book_info["title"] = book_li.xpath(".//p[contains(@class,'name')]//a/@title").extract()
- book_info["title"] = self.process_info(book_info["title"])
- book_info["href"] = book_li.xpath(".//p[contains(@class,'name')]//a/@href").extract_first()
- book_info["price"] = book_li.xpath(".//p[contains(@class,'price')]//span[contains(@class,'earch_now_price')]/text()").extract_first()
- book_info["price"] = book_info["price"].split(r";",1)[-1]
- book_info["author"] = book_li.xpath(".//a[contains(@name,'itemlist-author')]/text()").extract_first()
- book_info["press"] = book_li.xpath(".//a[contains(@name,'P_cbs')]/text()").extract_first()
- book_info["description"] = book_li.xpath(".//p[contains(@class,'detail')]//text()").extract_first()
- item["book_info"] = book_info
- pprint(item)
- url = response.xpath("//li[@class='next']/a/@href").extract_first()
- if url is not None:
- next_url = parse.urljoin(response.url,url)
- yield scrapy.Request(
- url=next_url,
- callback=self.parse_s_cate,
- meta={"item":response.meta["item"]}
- )