赞
踩
对于自动采摘机器人,首要的能力就是识别出苹果对象,因此如何从画面(图像)中准确的识别出苹果对象对于自动采摘机器人有重要影响。附件1给出了200张有苹果对象的图像,要计算出每个图像中苹果的数量,并分析附件1中苹果的数量分布。考虑从颜色空间(HSV,Hue Saturation Value),通过对不同色调、明度和饱和度的识别,结合轮廓检测对苹果与周围环境做出识别,并进行计数。
- import os
- import cv2
- import numpy as np
- # 图片文件夹路径
- folder_path = 'D:/math_model/2023yatai/Attachment/Attachment 1'
- image_files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
- count = []
- for file in image_files:
- # 读取图片
- image_path = os.path.join(folder_path, file)
- img = cv2.imread(image_path)
- # 将图片变为灰度图片
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
-
- # 进行腐蚀膨胀操作
- kernel = np.ones((2, 2), np.uint8)
- erosion = cv2.erode(gray, kernel, iterations=5) # 腐蚀
- dilation = cv2.dilate(erosion, kernel, iterations=5) # 膨胀
-
- # 颜色阈值化提取红色区域
- lower_red = np.array([20, 0, 100])
- upper_red = np.array([80, 100, 255])
- mask = cv2.inRange(img, lower_red, upper_red)
- '''
- # 定义红色苹果的HSV范围
- lower_red = np.array([0, 50, 50])
- upper_red = np.array([10, 255, 255])
- mask_red = cv2.inRange(img, lower_red, upper_red)
- # 定义青色苹果的HSV范围
- lower_green = np.array([35, 50, 50])
- upper_green = np.array([85, 255, 255])
- mask_green = cv2.inRange(img, lower_green, upper_green)
- # 合并红色和青色苹果的掩码
- mask = cv2.bitwise_or(mask_red, mask_green)
- '''
- # 找出红色区域的轮廓
- contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
-
- # 建立空数组,放减去最小面积的连通域
- contours_filtered = []
-
- # 设定面积阈值
- mianji = []
- for contour in contours:
- area = cv2.contourArea(contour)
- mianji.append(area)
- '''
- mianji = [x for i, x in enumerate(mianji) if x not in mianji[:i]] #去重
- #mianji = list(filter(lambda x: x != 0, mianji)) #删去0
- #mianji = [x for x in mianji if x >= 30]
- mianji = sorted(mianji)
- min_area = np.median(mianji)
- '''
- min_area = np.max(mianji)/80
- # 过滤面积太小的连通域
- for contour in contours:
- area = cv2.contourArea(contour)
- if area > min_area:
- contours_filtered.append(contour)
-
- # 绘制红色区域的轮廓并计数
- cv2.drawContours(img, contours_filtered, -1, (0, 0, 255), 1)
- apple_count = len(contours_filtered)
- if apple_count > 100:
- apple_count = apple_count*0.7
- count.append(apple_count)
- count_all = np.sum(count)
-
-
- import matplotlib.pyplot as plt
- plt.hist(count, bins=30, density=True, alpha=0.5,
- histtype='stepfilled', color='steelblue',
- edgecolor='none')
- plt.title('Histogram of apple count distribution')
- plt.xlabel('Number of apples')
- plt.ylabel('Frequency')
- # 显示数值(除了0)
- n, bins, patches = plt.hist(count, bins=30, color='skyblue', edgecolor='black', alpha=0.7)
- for i in range(len(patches)):
- if n[i] != 0:
- plt.text(patches[i].get_x() + patches[i].get_width() / 2, patches[i].get_height(),
- str(int(n[i])), ha='center', va='bottom')
- #plt.savefig('D:/math_model/2023yatai/图/Histogram of apple count distribution.png', dpi = 600) #保存图片
- plt.show()
- #%% 拼接几个图展示
- def imge_single(i):
- ii = str(i)
- img = cv2.imread(r'D:/math_model/2023yatai/Attachment/Attachment 1/' + ii +'.jpg', 1) # 读取图片
-
- # 将图片变为灰度图片
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
-
- # 进行腐蚀膨胀操作
- kernel = np.ones((2, 2), np.uint8)
- erosion = cv2.erode(gray, kernel, iterations=5) # 腐蚀
- dilation = cv2.dilate(erosion, kernel, iterations=5) # 膨胀
- lower_red = np.array([20, 0, 100])
- upper_red = np.array([80, 100, 255])
- mask = cv2.inRange(img, lower_red, upper_red)
- contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
- contours_filtered = []
- mianji = []
- for contour in contours:
- area = cv2.contourArea(contour)
- mianji.append(area)
- min_area = np.max(mianji)/80
- cv2.contourArea
- for contour in contours:
- area = cv2.contourArea(contour)
- if area > min_area:
- contours_filtered.append(contour)
- # 绘制红色区域的轮廓并计数
- cv2.drawContours(img, contours_filtered, -1, (0, 0, 255), 1)
- apple_count = len(contours_filtered)
- # 在图像上显示苹果数量
- cv2.putText(img, f"Apple Count: {apple_count}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (225, 25, 25), 2)
- plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # 将BGR图像转换为RGB格式
- plt.axis('off') # 不显示坐标轴
-
-
- plt.figure()
- plt.tight_layout()
- plt.subplots_adjust(left=None, bottom=None, right=None, top=None, \
- wspace=0.0005, hspace=0.1)
- plt.subplot(2,2,1)
- imge_single(55)
- plt.subplot(2,2,2)
- imge_single(2)
- plt.subplot(2,2,3)
- imge_single(7)
- plt.subplot(2,2,4)
- imge_single(11)
- #plt.savefig('D:/math_model/2023yatai/图/苹果拼图', dpi=500, bbox_inches='tight') # 保存为JPEG格式,设置dpi和bbox_inches参数
- plt.show()
对于前方的苹果,人类可以通过感觉精准分摘取,但机器人没有感官,它只能通过数字定位去获取苹果的位置。因此,识别图像中每个苹果的位置,并以图像左下角为原点,精准地给出苹果的坐标就很有必要。考虑在问题一的基础上,针对问题一已经找到的苹果,输出其中心点的位置坐标。苹果位置的分布规律在散点图中并不明显。从图中只可以看出四周的苹果分布会少一些,具体哪一个位置分布最广并不清晰。所以考虑使用热力图呈现图像中的苹果位置分布规律。
- import os
- import cv2
- import numpy as np
- import matplotlib.pyplot as plt
-
- # 图片文件夹路径
- folder_path = 'D:/math_model/2023yatai/Attachment/Attachment 1'
- image_files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
- all_apple_positions = []
-
- for file in image_files:
- # 读取图片
- image_path = os.path.join(folder_path, file)
- img = cv2.imread(image_path)
- # 将图片变为灰度图片
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
-
- # 进行腐蚀膨胀操作
- kernel = np.ones((2, 2), np.uint8)
- erosion = cv2.erode(gray, kernel, iterations=5) # 腐蚀
- dilation = cv2.dilate(erosion, kernel, iterations=5) # 膨胀
-
- # 颜色阈值化提取红色区域
- lower_red = np.array([20, 0, 100])
- upper_red = np.array([80, 100, 255])
- mask = cv2.inRange(img, lower_red, upper_red)
-
- # 找出红色区域的轮廓
- contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
-
- # 建立空数组,放减去最小面积的连通域
- contours_filtered = []
-
- # 设定面积阈值
- mianji = []
- for contour in contours:
- area = cv2.contourArea(contour)
- mianji.append(area)
- '''
- mianji = [x for i, x in enumerate(mianji) if x not in mianji[:i]] # 去重
- mianji = list(filter(lambda x: x != 0, mianji)) # 删去0
- mianji = sorted(mianji)
- min_area = np.median(mianji)
- '''
- min_area = np.max(mianji)/80
- # 过滤面积太小的连通域,并绘制红色区域的轮廓
- for contour in contours:
- area = cv2.contourArea(contour)
- if area > min_area:
- contours_filtered.append(contour)
- # 计算中心点位置
- M = cv2.moments(contour)
- if M["m00"] != 0:
- center_x = int(M["m10"] / M["m00"])
- center_y = int(M["m01"] / M["m00"])
- all_apple_positions.append((center_x, center_y))
-
- # 绘制所有苹果位置的二维散点图
- x_coords, y_coords = zip(*all_apple_positions)
- plt.scatter(x_coords, y_coords)
- plt.xlabel('Horizontal position')
- plt.ylabel('Vertical position')
- plt.title('Apple location scatterplot')
- #plt.savefig('D:/math_model/2023yatai/图/散点图(不建模-备用).png', dpi = 600)
- plt.show()
-
- import seaborn as sns
- # 绘制散点图热力图
- plt.figure(figsize=(10, 6))
- sns.kdeplot(x=x_coords, y=y_coords, cmap="Reds", fill=True, bw_adjust=0.5)
- plt.title('Heat map of the geometric coordinates of all apples', fontsize = 16)
- plt.xlabel('Horizontal position', fontsize = 14)
- plt.ylabel('Vertical position', fontsize = 14)
- plt.gca().invert_yaxis()
- #plt.savefig('D:/math_model/2023yatai/图/散点热力图.png', dpi = 600)
- plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。