赞
踩
1.基于统计的分词(无字典分词)
主要思想:上下文中,相邻的字同时出现的次数越多,就越可能构成一个词。因此字与字相邻出现的概率或频率能较好的反映词的可信度。
主要统计模型为:N元文法模型(N-gram)、隐马尔科夫模型(Hidden Markov Model, HMM)
1.1N-gram模型思想
模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积 .
我们给定一个词,然后猜测下一个词是什么。当我说“艳照门”这个词时,你想到下一个词是什么呢?我想大家很有可能会想到“陈冠希”,基本上不会有人会想到“陈志杰”吧。N-gram模型的主要思想就是这样的。
对于一个句子T,我们怎么算它出现的概率呢?假设T是由词序列W1,W2,W3,…Wn组成的,那么P(T)=P(W1W2W3…Wn)=P(W1)P(W2|W1)P(W3|W1W2)…P(Wn|W1W2…Wn-1)
但是这种方法存在两个致命的缺陷:一个缺陷是参数空间过大,不可能实用化;另外一个缺陷是数据稀疏严重。
为了解决这个问题,我们引入了马尔科夫假设:一个词的出现仅仅依赖于它前面出现的有限的一个或者几个词。
如果一个词的出现仅依赖于它前面出现的一个词,那么我们就称之为bigram。即
P(T) = P(W1W2W3…Wn)=P(W1)P(W2|W1)P(W3|W1W2)…P(Wn|W1W2…Wn-1)
≈P(W1)P(W2|W1)P(W3|W2)…P(Wn|Wn-1)
如果一个词的出现仅依赖于它前面出现的两个词,那么我们就称之为trigram。
在实践中用的最多的就是bigram和trigram了,而且效果很不错。高于四元的用的很少,因为训练它需要更庞大的语料,而且数据稀疏严重,时间复杂度高,精度却提高的不多。
设w1,w2,w3,...,wn是长度为n的字符串,规定任意词wi 只与它的前两个相关,得到三元概率模型
以此类推,N元模型就是假设当前词的出现概率只同它前面的N-1个词有关。
分词系统判断标准(待解决问题):歧义识别,新词(未登录词)识别
转自http://www.cnblogs.com/lvpei/archive/2010/08/04/1792409.html
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。