当前位置:   article > 正文

YOLOv8 检测、分割模型的 OpenVINO 部署

yolov8 openvino

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

为什么需要OpenVINO?

OpenVINO(Open Visual Inference and Neural network Optimization)是英特尔推出的一种深度学习推理工具包,旨在优化和加速深度学习模型的推理过程。将模型转换为OpenVINO格式的主要优势有:

  1. 性能优化:OpenVINO能够针对英特尔硬件进行优化,包括 CPU、GPU、VPU 和 FPGA 等,从而实现对深度学习模型的加速推理,提高推理性能和效率。

  2. 跨平台部署:OpenVINO支持跨多种硬件平台进行部署,包括边缘设备和云服务器,能够在不同的设备上实现高效的推理。

  3. 模型保护:OpenVINO可以将模型转换为 IR(Intermediate Representation)格式,这样可以保护模型的知识产权,避免模型被轻易篡改或复制。

  4. 部署简化:OpenVINO提供了简单易用的部署工具和库,使得在实际应用中部署深度学习模型变得更加便捷。

使用自定义训练模型进行图像检测

  1. from ultralytics import YOLO
  2. from pathlib import Path
  3. from IPython.display import Image
  4. from PIL import Image
  5. IMAGE_PATH = Path("data\coco_bike.jpg")
  6. # There are three lines of code below, all are correct.
  7. # You can use one of them
  8. # Use Raw String Literal:
  9. # det_model = YOLO(r"models\best.pt")
  10. # Use Forward Slashes
  11. # det_model = YOLO("models/best.pt")
  12. # Use Double Backslashes:
  13. det_model = YOLO("models\\best.pt")
  14. label_map = det_model.model.names
  15. res = det_model(IMAGE_PATH)
  16. Image.fromarray(res[0].plot()[:, :, ::-1])

当我们在终端中运行上述代码时,它会对图像执行检测,如下所示:

a11930fe4358fabea48a3b17a8a3df1e.jpeg

上述代码的解释

此代码是一个 Python 脚本,它使用“ultralytics”库中的 YOLO(You Only Look Once)对象检测模型来检测图像中的对象。让我们分解一下代码的每个部分的作用:

  1. 导入库:

  • 该ultralytics库提供了用于处理各种计算机视觉任务的工具,包括使用 YOLO 进行对象检测。

  • 该pathlib库用于处理文件和目录路径。

  • 该IPython.display库用于在 Jupyter 笔记本中显示图像。

  • 该PIL库(Python Imaging Library)用于图像处理。

2.定义图像路径:

  • 该IMAGE_PATH变量设置为位于名为“data”的目录中名为“coco_bike.jpg”的图像文件的路径。

3.加载YOLO模型:

  • 使用 ultralytics 库中的类加载 YOLO 模型YOLO。模型文件“best.pt”作为参数提供。

4. 获取标签图:

  • 该label_map变量被分配了 YOLO 模型能够检测的类名列表。这些类名是从 YOLO 模型中加载的。

5.检测物体:

  • YOLO 模型 ( det_model) 用于检测指定图像中的物体 ( IMAGE_PATH)。

  • 检测结果存储在res变量中。

6.显示结果:

  • Image.fromarray()使用库中的函数显示检测结果PIL。该plot()方法用于创建检测到的对象的图像表示,并使用切片([:, :, ::-1])反转颜色通道以将图像从 BGR 转换为 RGB 格式。

分割

  1. from ultralytics import YOLO
  2. from pathlib import Path
  3. from IPython.display import Image
  4. from PIL import Image
  5. SEG_MODEL_NAME = "yolov8n-seg"
  6. IMAGE_PATH = Path("data\coco_bike.jpg")
  7. seg_model = YOLO("models\yolov8n-seg.pt")
  8. res = seg_model(IMAGE_PATH)
  9. Image.fromarray(res[0].plot()[:, :, ::-1])

输出:

23b216cfd9c86ffd36f653e0c2028f4d.jpeg

上述代码的解释

让我们以简单的方式一步一步地解释一下这段代码:

  1. 导入库:

  • 该代码使用该ultralytics库来处理计算机视觉模型。

  • 该pathlib库用于处理文件路径。

  • 该IPython.display库用于在笔记本中显示图像。

  • 该PIL库用于与图像相关的任务。

2.设置模型名称和图像路径:

  • 该SEG_MODEL_NAME变量设置为“yolov8n-seg”分割模型的名称。该模型旨在理解图像的结构并将其分割成不同的部分。

  • 该IMAGE_PATH变量设置为位于“data”目录中名为“coco_bike.jpg”的图像文件的路径。

3.加载分割模型:

  • YOLO使用ultralytics 库中的类加载 YOLO 分割模型。

  • 模型文件“yolov8n-seg.pt”作为参数提供。此文件包含分割模型的预训练权重和配置。

4.执行分割:

  • seg_model使用分割模型( )对指定的图像( IMAGE_PATH)进行分割。

  • 分割的结果存储在res变量中。

5.显示分割图像:

  • 代码将分割结果转换为可以显示的图像格式。

  • 该plot()方法用于创建分割区域的图像表示。

  • 图像的颜色通道被反转([:, :, ::-1])以使其适合以 RGB 格式显示。

6.显示图像:

  • Image.fromarray()该库中的函数用于PIL在 IPython 笔记本中显示分割图像。

导出物体检测模

  1. # object detection model
  2. from ultralytics import YOLO
  3. import os
  4. # Use Forward Slashes
  5. det_model = YOLO("models/best.pt")
  6. det_model_path = "models/best_openvino_model/best.xml"
  7. if not os.path.exists(det_model_path):
  8. det_model.export(format="openvino", dynamic=True, half=False)

输出:

5103cac0d2b9419da244eec0461625ce.jpeg

62e0d3e05c8d261acea019756e8d6aac.jpeg

上述代码的解释:

  1. 导入库:

  • 代码YOLO从ultralytics库中导入类以与对象检测模型协同工作。

  • 该os模块被导入是为了与操作系统协同工作。

2.加载对象检测模型:

  • YOLO使用库中的类加载对象检测模型ultralytics。

  • 模型文件“best.pt”作为参数提供。该模型用于检测图像中的对象。

3.定义 OpenVINO 的导出路径:

  • 该变量det_model_path设置为对象检测模型的 OpenVINO 模型文件“best.xml”的路径。

4.导出为 OpenVINO 格式:

  • 代码检查 OpenVINO 模型文件是否不存在指定路径。

  • 如果文件不存在,则使用该export方法将对象检测模型导出为 OpenVINO 格式:

    • format="openvino"指定导出格式应为OpenVINO。

    • dynamic=True表示导出的模型应该支持动态输入形状。

    • half=False指定导出的模型不应使用半精度浮点数。

导出分割模型

  1. # Export segmentation model
  2. from ultralytics import YOLO
  3. import os
  4. # Use Forward Slashes
  5. seg_model = YOLO("models/yolov8n-seg.pt")
  6. seg_model_path = "models/yolov8n-seg_openvino_model/yolov8n-seg.xml"
  7. if not os.path.exists(seg_model_path):
  8. seg_model.export(format="openvino", dynamic=True, half=False)

输出:

e5ab49b03fc55eba4e4cf1da22d515d6.jpeg

c95cd07d666610516b7f902f95b05116.jpeg

上述代码的解释:

  1. 导入库:

  • 代码YOLO从ultralytics库中导入类以与分割模型协同工作。

  • 该os模块被导入用于与操作系统交互。

2.加载分割模型:

  • YOLO使用库中的类来加载分割模型ultralytics。

  • 模型文件“yolov8n-seg.pt”作为参数提供。该模型专为图像分割而设计。

3.定义 OpenVINO 的导出路径:

  • 该变量seg_model_path设置为OpenVINO模型文件“yolov8n-seg.xml”的保存路径。

4.导出为 OpenVINO 格式:

  • 代码检查 OpenVINO 模型文件是否不存在指定路径。

  • 如果该文件不存在,则使用该export方法将分割模型导出为 OpenVINO 格式:

    • format="openvino"指定导出格式应为OpenVINO。

    • dynamic=True表示导出的模型应该支持动态输入形状。

    • half=False指定导出的模型不应使用半精度浮点数。

文中完整的项目地址和模型可以查看:https://github.com/mushfiq1998/export-trained-yolov8-to-openvino-with-python

 
 
  1. 下载1:OpenCV-Contrib扩展模块中文版教程
  2. 在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
  3. 下载2:Python视觉实战项目52
  4. 在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
  5. 下载3:OpenCV实战项目20
  6. 在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
  7. 交流群
  8. 欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/神奇cpp/article/detail/1013367
推荐阅读
相关标签
  

闽ICP备14008679号