赞
踩
Problem Description
You are given an array a consisting of n integers.
In one move, you can choose two indices 1≤i,j≤n such that i≠j and set ai:=aj. You can perform such moves any number of times (possibly, zero). You can choose different indices in different operations. The operation := is the operation of assignment (i.e. you choose i and j and replace ai with aj).
Your task is to say if it is possible to obtain an array with an odd (not divisible by 2) sum of elements.
You have to answer t independent test cases.
Input
The first line of the input contains one integer t (1≤t≤2000) — the number of test cases.
The next 2t lines describe test cases. The first line of the test case contains one integer n (1≤n≤2000) — the number of elements in a. The second line of the test case contains n integers a1,a2,…,an (1≤ai≤2000), where ai is the i-th element of a.
It is guaranteed that the sum of n over all test cases does not exceed 2000 (∑n≤2000).
Output
For each test case, print the answer on it — "YES" (without quotes) if it is possible to obtain the array with an odd sum of elements, and "NO" otherwise.
Examples
Input
5
2
2 3
4
2 2 8 8
3
3 3 3
4
5 5 5 5
4
1 1 1 1Output
YES
NO
YES
NO
NO
题意:t 组数据,每组给出 n 个数,对于任意两个数 a[i]、a[j],可以令 a[i]=a[j],问在有限次操作的情况下,这 n 个数的和是否能变成一个奇数
思路:简单的思维题,首先,如果这 n 个数全是偶数,那么一定不可能,然后,如果这 n 个数都是奇数,且 n 是一个偶数,那么无论怎么变,偶数个奇数相加一定是偶数,也不可能,排除上述两种情况外,其他情况全都可能
- #include<iostream>
- #include<cstdio>
- #include<cstdlib>
- #include<string>
- #include<cstring>
- #include<cmath>
- #include<ctime>
- #include<algorithm>
- #include<utility>
- #include<stack>
- #include<queue>
- #include<vector>
- #include<set>
- #include<map>
- #include<bitset>
- #define PI acos(-1.0)
- #define INF 0x3f3f3f3f
- #define LL long long
- #define Pair pair<int,int>
- LL quickPow(LL a,LL b){ LL res=1; while(b){if(b&1)res*=a; a*=a; b>>=1;} return res; }
- LL multMod(LL a,LL b,LL mod){ a%=mod; b%=mod; LL res=0; while(b){if(b&1)res=(res+a)%mod; a=(a<<=1)%mod; b>>=1; } return res%mod;}
- LL quickMultPowMod(LL a, LL b,LL mod){ LL res=1,k=a; while(b){if((b&1))res=multMod(res,k,mod)%mod; k=multMod(k,k,mod)%mod; b>>=1;} return res%mod;}
- LL quickPowMod(LL a,LL b,LL mod){ LL res=1; while(b){if(b&1)res=(a*res)%mod; a=(a*a)%mod; b>>=1; } return res; }
- LL getInv(LL a,LL mod){ return quickPowMod(a,mod-2,mod); }
- LL GCD(LL x,LL y){ return !y?x:GCD(y,x%y); }
- LL LCM(LL x,LL y){ return x/GCD(x,y)*y; }
- const double EPS = 1E-15;
- const int MOD = 1000000000+7;
- const int N = 2000+5;
- const int dx[] = {0,0,1,-1,1,1,-1,-1};
- const int dy[] = {1,-1,0,0,1,-1,1,-1};
- using namespace std;
-
- int a[N];
- int main() {
- int t;
- scanf("%d", &t);
- while (t--) {
- int n;
- scanf("%d", &n);
-
- int odd = 0, even = 0;
- for (int i = 1; i <= n; i++) {
- scanf("%d", &a[i]);
- if (a[i] % 2)
- odd++;
- else
- even++;
- }
-
- if (even == n)
- printf("NO\n");
- else {
- if (n % 2 == 0 && odd == n)
- printf("NO\n");
- else
- printf("YES\n");
- }
- }
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。