赞
踩
目录
2.4.3 度量(Metric) and 管道(pipeline)聚合
elasticsearch的查询依然是基于JSON风格的DSL来实现的。
Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:
查询所有:查询出所有数据,一般测试用。例如:match_all
全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
地理(geo)查询:根据经纬度查询。例如:
复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
查询的语法基本一致:
- GET /indexName/_search
- {
- "query": {
- "查询类型": {
- "查询条件": "条件值"
- }
- }
- }
我们以查询所有为例,其中:
- // 查询所有
- GET /indexName/_search
- {
- "query": {
- "match_all": {
- }
- }
- }
其它查询无非就是查询类型、查询条件的变化。
match和multi_match的区别是什么?
- match:根据一个字段查询【推荐:使用copy_to构造all字段】
- multi_match:根据多个字段查询,参与查询字段越多,查询性能越差
注:搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。
全文检索查询的基本流程如下:
比较常用的场景包括:
例如京东:
因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。
常见的全文检索查询包括:
match查询语法如下:
- GET /indexName/_search
- {
- "query": {
- "match": {
- "FIELD": "TEXT"
- }
- }
- }
match查询示例:
mulit_match语法如下:
- GET /indexName/_search
- {
- "query": {
- "multi_match": {
- "query": "TEXT",
- "fields": ["FIELD1", " FIELD12"]
- }
- }
- }
multi_match查询示例:
精准查询类型:
- term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
- range查询:根据数值范围查询,可以是数值、日期的范围
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
因为精确查询的字段搜时不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法说明:
- // term查询
- GET /indexName/_search
- {
- "query": {
- "term": {
- "FIELD": {
- "value": "VALUE"
- }
- }
- }
- }
示例:
当我搜索的是精确词条时,能正确查询出结果:
但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
基本语法:
- // range查询
- GET /indexName/_search
- {
- "query": {
- "range": {
- "FIELD": {
- "gte": 10, // 这里的gte代表大于等于,gt则代表大于
- "lte": 20 // lte代表小于等于,lt则代表小于
- }
- }
- }
- }
示例:
所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html
常见的使用场景包括:
附近的酒店:
附近的车:
很少有业务有这种需求
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:
查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法如下:
- // geo_bounding_box查询
- GET /indexName/_search
- {
- "query": {
- "geo_bounding_box": {
- "FIELD": {
- "top_left": { // 左上点
- "lat": 31.1,
- "lon": 121.5
- },
- "bottom_right": { // 右下点
- "lat": 30.9,
- "lon": 121.7
- }
- }
- }
- }
- }
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:
语法说明:
- // geo_distance 查询
- GET /indexName/_search
- {
- "query": {
- "geo_distance": {
- "distance": "15km", // 半径
- "FIELD": "31.21,121.5" // 圆心
- }
- }
- }
示例:
我们先搜索陆家嘴附近15km的酒店:
发现共有47家酒店。
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
- GET /hotel/_search
- {
- "query": {
- "function_score": {
- "query": { // 原始查询,可以是任意条件
- "bool": {
- "must": [
- {"term": {"city": "上海" }}
- ],
- "should": [
- {"term": {"brand": "皇冠假日" }},
- {"term": {"brand": "华美达" }}
- ],
- "must_not": [
- { "range": { "price": { "lte": 500 } }}
- ],
- "filter": [
- { "range": {"score": { "gte": 45 } }}
- ]
- }
- },
- "functions": [ // 算分函数
- {
- "filter": { // 满足的条件,品牌必须是如家【品牌是如家的才加分,这里是加分条件】
- "term": {
- "brand": "如家"
- }
- },
- "weight": 2 // 算分权重为2
- }
- ],
- "boost_mode": "sum" // 加权模式,求和
- }
- }
- }
-
elasticsearch会根据词条和文档的相关度做打分,算法由两种:
- TF-IDF算法
- BM25算法,elasticsearch5.1版本后采用的算法
当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
例如,我们搜索 "虹桥如家",结果如下:
- [
- {
- "_score" : 17.850193,
- "_source" : {
- "name" : "虹桥如家酒店真不错",
- }
- },
- {
- "_score" : 12.259849,
- "_source" : {
- "name" : "外滩如家酒店真不错",
- }
- },
- {
- "_score" : 11.91091,
- "_source" : {
- "name" : "迪士尼如家酒店真不错",
- }
- }
- ]
在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:
在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:
TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:
在搜索出来的结果的分数基础上,再手动与指定的数字进行一定运算来改变算分,从而改变结果的排序。
function score query定义的三要素是什么?
- 过滤条件:哪些文档要加分
- 算分函数:如何计算function score
- 加权方式:function score 与 query score如何运算
根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。
以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:
要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。
1)语法说明
function score 查询中包含四部分内容:
function score的运行流程如下:
2)举例
需求:给“如家”这个品牌的酒店排名靠前一些
翻译一下这个需求,转换为之前说的四个要点:
因此最终的DSL语句如下:
- GET /hotel/_search
- {
- "query": {
- "function_score": {
- "query": { .... }, // 原始查询,可以是任意条件
- "functions": [ // 算分函数
- {
- "filter": { // 满足的条件,品牌必须是如家【品牌是如家的才加分,这里是加分条件】
- "term": {
- "brand": "如家"
- }
- },
- "weight": 2 // 算分权重为2
- }
- ],
- "boost_mode": "sum" // 加权模式,求和
- }
- }
- }
测试,在未添加算分函数时,如家得分如下:
添加了算分函数后,如家得分就提升了:
布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:
- must:必须匹配每个子查询,类似“与”
- should:选择性匹配子查询,类似“或”
- must_not:必须不匹配,不参与算分,类似“非”
- filter:必须匹配,不参与算分
注意:尽量在筛选的时候多使用不参与算分的must_not和filter,以保证性能良好
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:
每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
1)语法
- GET /hotel/_search
- {
- "query": {
- "bool": {
- "must": [
- {"term": {"city": "上海" }}
- ],
- "should": [
- {"term": {"brand": "皇冠假日" }},
- {"term": {"brand": "华美达" }}
- ],
- "must_not": [
- { "range": { "price": { "lte": 500 } }}
- ],
- "filter": [
- { "range": {"score": { "gte": 45 } }}
- ]
- }
- }
- }
2)示例
需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。
分析:
搜索的结果可以按照用户指定的方式去处理或展示。
查询的DSL是一个大的JSON对象,包含下列属性:
示例:
在使用排序后就不会进行算分了,根据排序设置的规则排列
普通字段是根据字典序排序
地理坐标是根据举例远近排序
keyword、数值、日期类型排序的排序语法基本一致。
语法:
排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推
(可以参考下面的图片案例)
- GET /indexName/_search
- {
- "query": {
- "match_all": {}
- },
- "sort": [
- {
- "FIELD": "desc" // 排序字段、排序方式ASC、DESC
- }
- ]
- }
示例:
需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序
地理坐标排序略有不同。
语法说明:
- GET /indexName/_search
- {
- "query": {
- "match_all": {}
- },
- "sort": [
- {
- "_geo_distance" : {
- "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
- "order" : "asc", // 排序方式
- "unit" : "km" // 排序的距离单位
- }
- }
- ]
- }
这个查询的含义是:
示例:
需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序
提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/
假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。
elasticsearch会禁止from+ size 超过10000的请求
elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:
类似于mysql中的limit ?, ?
分页的基本语法如下:
- GET /hotel/_search
- {
- "query": {
- "match_all": {}
- },
- "from": 0, // 分页开始的位置,默认为0
- "size": 10, // 期望获取的文档总数
- "sort": [
- {"price": "asc"}
- ]
- }
原理:elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条
现在,我要查询990~1000的数据,查询逻辑要这么写:
- GET /hotel/_search
- {
- "query": {
- "match_all": {}
- },
- "from": 990, // 分页开始的位置,默认为0
- "size": 10, // 期望获取的文档总数
- "sort": [
- {"price": "asc"}
- ]
- }
这里是查询990开始的数据,也就是 第990~第1000条 数据。
集群情况的深度分页
针对深度分页,ES提供了两种解决方案,官方文档:
- search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。【官方推荐】
- scroll:原理将排序后的文档id形成快照,保存在内存。
不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:
查询TOP1000,如果es是单点模式,这并无太大影响。
但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。
因为节点A的TOP200,在另一个节点可能排到10000名以外了。
因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。
那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?
当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。
注意:
- 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
- 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
- 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false
使用场景:在百度等搜索后,会对结果中出现搜索字段的部分进行高亮处理。
高亮显示的实现分为两步:
<em>
标签<em>
标签编写CSS样式1)语法
- GET /hotel/_search
- {
- "query": {
- "match": {
- "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
- }
- },
- "highlight": {
- "fields": { // 指定要高亮的字段
- "FIELD": { //【要和上面的查询字段FIELD一致】
- "pre_tags": "<em>", // 用来标记高亮字段的前置标签
- "post_tags": "</em>" // 用来标记高亮字段的后置标签
- }
- }
- }
- }
2)示例:组合字段all的案例
类似于mysql中的【度量(Metric)聚合】聚合语句实现AVG,MAX,MIN;以及【桶(Bucket)聚合】GroupBy实现分组
聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
aggs代表聚合,与query同级,此时query的作用是?
聚合必须的三要素:
聚合可配置属性有:
注意:参加聚合的字段必须是keyword、日期、数值、布尔类型
聚合常见的有三类:
桶(Bucket)聚合:用来对文档做分组
度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
管道(pipeline)聚合:其它聚合的结果为基础做聚合
如:用桶聚合实现种类排序,然后使用度量聚合实现各个桶的最大值、最小值、平均值等
以统计酒店品牌种类,并对其进行数据分组
- GET /hotel/_search
- {
- "query": { //限定要聚合的文档范围,只要添加query条件【一般在没搜索关键字时不写query】
- "range": {
- "price": {
- "lte": 200 // 只对200元以下的文档聚合
- }
- }
- },
- "size": 0, // 设置size为0,结果中不包含查询结果文档,只包含聚合结果
- "aggs": { // 定义聚合
- "brandAgg": { //给聚合起个名字
- "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
- "field": "brand", // 参与聚合的字段
- "order": {
- "doc_count": "asc" // 对聚合结果按照doc_count升序排列
- },
- "size": 20 // 希望获取的聚合结果数量【设置多少就最多只显示多少】
- }
- }
- }
- }
度量聚合很少单独使用,一般是和桶聚合一并结合使用
我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。
这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
语法如下:
这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。
- GET /hotel/_search
- {
- "size": 0,
- "aggs": {
- "brandAgg": {
- "terms": {
- "field": "brand",
- "order": {
- "scoreAgg.avg": "desc" // 对聚合结果按照指定字段降序排列
- },
- "size": 20
- },
- "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
- "score_stats": { // 聚合名称
- "stats": { // 聚合类型,这里stats可以计算min、max、avg等
- "field": "score" // 聚合字段,这里是score
- }
- }
- }
- }
- }
- }
另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:
文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:
查询的基本步骤是:
创建SearchRequest对象
准备Request.source(),也就是DSL。
① QueryBuilders来构建查询条件
② 传入Request.source() 的 query() 方法
发送请求,得到结果
解析结果(参考JSON结果,从外到内,逐层解析)
代码解读:
第一步,创建SearchRequest
对象,指定索引库名
第二步,利用request.source()
构建DSL,DSL中可以包含查询、分页、排序、高亮等
query()
:代表查询条件,利用QueryBuilders.matchAllQuery()
构建一个match_all查询的DSL第三步,利用client.search()发送请求,得到响应
这里关键的API有两个,一个是request.source()
,其中包含了查询、排序、分页、高亮等所有功能:
另一个是QueryBuilders
,其中包含match、term、function_score、bool等各种查询:
响应结果的解析:
elasticsearch返回的结果是一个JSON字符串,结构包含:
hits
:命中的结果
total
:总条数,其中的value是具体的总条数值max_score
:所有结果中得分最高的文档的相关性算分hits
:搜索结果的文档数组,其中的每个文档都是一个json对象
_source
:文档中的原始数据,也是json对象因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:
SearchHits
:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
SearchHits#getTotalHits().value
:获取总条数信息SearchHits#getHits()
:获取SearchHit数组,也就是文档数组
SearchHit#getSourceAsString()
:获取文档结果中的_source,也就是原始的json文档数据完整代码如下:
- @Test
- void testMatchAll() throws IOException {
- // 1.准备Request
- SearchRequest request = new SearchRequest("hotel");
- // 2.准备DSL
- request.source()
- .query(QueryBuilders.matchAllQuery());
- // 3.发送请求
- SearchResponse response = client.search(request, RequestOptions.DEFAULT);
-
- // 4.解析响应
- handleResponse(response);
- }
-
- private void handleResponse(SearchResponse response) {
- // 4.解析响应
- SearchHits searchHits = response.getHits();
- // 4.1.获取总条数
- long total = searchHits.getTotalHits().value;
- System.out.println("共搜索到" + total + "条数据");
- // 4.2.文档数组
- SearchHit[] hits = searchHits.getHits();
- // 4.3.遍历
- for (SearchHit hit : hits) {
- // 获取文档source
- String json = hit.getSourceAsString();
- // 反序列化
- HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
- System.out.println("hotelDoc = " + hotelDoc);
- }
- }
全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。
因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:
而结果解析代码则完全一致,可以抽取并共享。
完整代码如下:
- @Test
- void testMatch() throws IOException {
- // 1.准备Request
- SearchRequest request = new SearchRequest("hotel");
- // 2.准备DSL
- request.source()
- .query(QueryBuilders.matchQuery("all", "如家"));
- // 3.发送请求
- SearchResponse response = client.search(request, RequestOptions.DEFAULT);
- // 4.解析响应
- handleResponse(response);
-
- }
精确查询主要是两者:
与之前的查询相比,差异同样在查询条件,其它都一样。
查询条件构造的API如下:
DSL格式
在cn.itcast.hotel.service.impl
的HotelService
的search
方法中,添加一个排序功能:
完整代码:
- @Override
- public PageResult search(RequestParams params) {
- try {
- // 1.准备Request
- SearchRequest request = new SearchRequest("hotel");
- // 2.准备DSL
- // 2.1.query
- buildBasicQuery(params, request);
-
- // 2.2.分页
- int page = params.getPage();
- int size = params.getSize();
- request.source().from((page - 1) * size).size(size);
-
- // 2.3.排序
- String location = params.getLocation();
- if (location != null && !location.equals("")) {
- request.source().sort(SortBuilders
- .geoDistanceSort("location", new GeoPoint(location))
- .order(SortOrder.ASC)
- .unit(DistanceUnit.KILOMETERS)
- );
- }
-
- // 3.发送请求
- SearchResponse response = client.search(request, RequestOptions.DEFAULT);
- // 4.解析响应
- return handleResponse(response);
- } catch (IOException e) {
- throw new RuntimeException(e);
- }
- }
布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:
可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。
完整代码如下:
- @Test
- void testBool() throws IOException {
- // 1.准备Request
- SearchRequest request = new SearchRequest("hotel");
- // 2.准备DSL
- // 2.1.准备BooleanQuery
- BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
- // 2.2.添加term
- boolQuery.must(QueryBuilders.termQuery("city", "杭州"));
- // 2.3.添加range
- boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));
-
- request.source().query(boolQuery);
- // 3.发送请求
- SearchResponse response = client.search(request, RequestOptions.DEFAULT);
- // 4.解析响应
- handleResponse(response);
-
- }
java代码逻辑:添加一个isAD字段,在算分函数的filter中判断
isAD=ture
就进行重新算分
function_score查询结构如下:
对应的JavaAPI如下:
我们可以将之前写的boolean查询作为原始查询条件放到query中,接下来就是添加过滤条件、算分函数、加权模式了。
- // 算分控制
- FunctionScoreQueryBuilder functionScoreQuery =
- QueryBuilders.functionScoreQuery(
- // 原始查询,相关性算分的查询
- boolQuery,
- // function score的数组
- new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
- // 其中的一个function score 元素
- new FunctionScoreQueryBuilder.FilterFunctionBuilder(
- // 过滤条件
- QueryBuilders.termQuery("isAD", true),
- // 算分函数
- ScoreFunctionBuilders.weightFactorFunction(10)
- )
- });
- //将查询请求放入查询
- request.source().query(functionScoreQuery);
由于这两个比较简单,所以一起写了
搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。
对应的API如下:
完整代码示例:
- @Test
- void testPageAndSort() throws IOException {
- // 页码,每页大小
- int page = 1, size = 5;
-
- // 1.准备Request
- SearchRequest request = new SearchRequest("hotel");
- // 2.准备DSL
- // 2.1.query
- request.source().query(QueryBuilders.matchAllQuery());
- // 2.2.排序 sort
- request.source().sort("price", SortOrder.ASC);
- // 2.3.分页 from、size
- request.source().from((page - 1) * size).size(5);
- // 3.发送请求
- SearchResponse response = client.search(request, RequestOptions.DEFAULT);
- // 4.解析响应
- handleResponse(response);
-
- }
高亮的代码与之前代码差异较大,有两点:
1)高亮请求构建
高亮请求的构建API如下:
上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。
完整代码如下:
- @Test
- void testHighlight() throws IOException {
- // 1.准备Request
- SearchRequest request = new SearchRequest("hotel");
- // 2.准备DSL
- // 2.1.query
- request.source().query(QueryBuilders.matchQuery("all", "如家"));
- // 2.2.高亮
- request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
- // 3.发送请求
- SearchResponse response = client.search(request, RequestOptions.DEFAULT);
- // 4.解析响应
- handleResponse(response);
- }
2)高亮结果解析
高亮的结果与查询的文档结果默认是分离的,并不在一起。
因此解析高亮的代码需要额外处理:
代码解读:
完整代码如下:
- private void handleResponse(SearchResponse response) {
- // 4.解析响应
- SearchHits searchHits = response.getHits();
- // 4.1.获取总条数
- long total = searchHits.getTotalHits().value;
- System.out.println("共搜索到" + total + "条数据");
- // 4.2.文档数组
- SearchHit[] hits = searchHits.getHits();
- // 4.3.遍历
- for (SearchHit hit : hits) {
- // 获取文档source
- String json = hit.getSourceAsString();
- // 反序列化
- HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
- // 获取高亮结果
- Map<String, HighlightField> highlightFields = hit.getHighlightFields();
- if (!CollectionUtils.isEmpty(highlightFields)) {
- // 根据字段名获取高亮结果
- HighlightField highlightField = highlightFields.get("name");
- if (highlightField != null) {
- // 获取高亮值
- String name = highlightField.getFragments()[0].string();
- // 覆盖非高亮结果
- hotelDoc.setName(name);
- }
- }
- System.out.println("hotelDoc = " + hotelDoc);
- }
- }
聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。
聚合条件的语法:
聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:
举例:业务代码
- @Override
- public Map<String, List<String>> filters(RequestParams params) {
- try {
- // 1.准备Request
- SearchRequest request = new SearchRequest("hotel");
- // 2.准备DSL
- // 2.1.query查询语句
- buildBasicQuery(params, request);
- // 2.2.设置size
- request.source().size(0);
- // 2.3.聚合
- buildAggregation(request);
- // 3.发出请求
- SearchResponse response = client.search(request, RequestOptions.DEFAULT);
- // 4.解析结果
- Map<String, List<String>> result = new HashMap<>();
- Aggregations aggregations = response.getAggregations();
- // 4.1.根据品牌名称,获取品牌结果
- List<String> brandList = getAggByName(aggregations, "brandAgg");
- result.put("品牌", brandList);
- // 4.2.根据品牌名称,获取品牌结果
- List<String> cityList = getAggByName(aggregations, "cityAgg");
- result.put("城市", cityList);
- // 4.3.根据品牌名称,获取品牌结果
- List<String> starList = getAggByName(aggregations, "starAgg");
- result.put("星级", starList);
-
- return result;
- } catch (IOException e) {
- throw new RuntimeException(e);
- }
- }
-
- private void buildAggregation(SearchRequest request) {
- request.source().aggregation(AggregationBuilders
- .terms("brandAgg")
- .field("brand")
- .size(100)
- );
- request.source().aggregation(AggregationBuilders
- .terms("cityAgg")
- .field("city")
- .size(100)
- );
- request.source().aggregation(AggregationBuilders
- .terms("starAgg")
- .field("starName")
- .size(100)
- );
- }
-
- private List<String> getAggByName(Aggregations aggregations, String aggName) {
- // 4.1.根据聚合名称获取聚合结果
- Terms brandTerms = aggregations.get(aggName);
- // 4.2.获取buckets
- List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
- // 4.3.遍历
- List<String> brandList = new ArrayList<>();
- for (Terms.Bucket bucket : buckets) {
- // 4.4.获取key
- String key = bucket.getKeyAsString();
- brandList.add(key);
- }
- return brandList;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。