赞
踩
AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。两种运行模式的详细介绍如下:
动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。
在MindSpore中,动态图模式又被称为PyNative模式。由于动态图的解释执行特性,在脚本开发和网络流程调试过程中,推荐使用动态图模式进行调试。
如需要手动控制框架采用PyNative模式,可以通过以下代码进行网络构建:
import numpy as np import mindspore as ms from mindspore import nn, Tensor ms.set_context(mode=ms.PYNATIVE_MODE) # 使用set_context进行动态图模式的配置 class Network(nn.Cell): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.dense_relu_sequential = nn.SequentialCell( nn.Dense(28*28, 512), nn.ReLU(), nn.Dense(512, 512), nn.ReLU(), nn.Dense(512, 10) ) def construct(self, x): x = self.flatten(x) logits = self.dense_relu_sequential(x) return logits model = Network() input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32)) output = model(input) print(output)
运行结果
[[-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475] [-0.03566104 -0.1120851 0.07692513 -0.01651601 -0.09375141 0.01726679 -0.11652644 0.00121147 0.08274855 -0.05799475]]
相较于动态图而言,静态图的特点是将计算图的构建和实际计算分开(Define and run)。有关静态图模式的运行原理,可以参考静态图语法支持。
在MindSpore中,静态图模式又被称为Graph模式,在Graph模式下,基于图优化、计算图整图下沉等技术,编译器可以针对图进行全局的优化,获得较好的性能,因此比较适合网络固定且需要高性能的场景。
如需要手动控制框架采用静态图模式,可以通过以下代码进行网络构建:
import numpy as np import mindspore as ms from mindspore import nn, Tensor ms.set_context(mode=ms.GRAPH_MODE) # 使用set_context进行运行静态图模式的配置 class Network(nn.Cell): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.dense_relu_sequential = nn.SequentialCell( nn.Dense(28*28, 512), nn.ReLU(), nn.Dense(512, 512), nn.ReLU(), nn.Dense(512, 10) ) def construct(self, x): x = self.flatten(x) logits = self.dense_relu_sequential(x) return logits model = Network() input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32)) output = model(input) print(output)
运行结果
[[ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848] [ 0.00483203 0.04191997 0.13207492 0.02343503 0.06897408 0.07376932 0.17980443 -0.00792498 -0.0318887 0.05697848]]
MindSpore编译器重点面向Tensor数据的计算以及其微分处理。因此使用MindSpore API以及基于Tensor对象的操作更适合使用静态图编译优化。其他操作虽然可以部分入图编译,但实际优化作用有限。另外,静态图模式先编译后执行的模式导致其存在编译耗时。因此,如果函数无需反复执行,那么使用静态图加速也可能没有价值。
有关使用静态图来进行网络编译的示例,请参考网络构建。
通常情况下,由于动态图的灵活性,我们会选择使用PyNative模式来进行自由的神经网络构建,以实现模型的创新和优化。但是当需要进行性能加速时,我们需要对神经网络部分或整体进行加速。MindSpore提供了两种切换为图模式的方式,分别是基于装饰器的开启方式以及基于全局context的开启方式。
MindSpore提供了jit装饰器,可以通过修饰Python函数或者Python类的成员函数使其被编译成计算图,通过图优化等技术提高运行速度。此时我们可以简单的对想要进行性能优化的模块进行图编译加速,而模型其他部分,仍旧使用解释执行方式,不丢失动态图的灵活性。无论全局context是设置成静态图模式还是动态图模式,被jit修饰的部分始终会以静态图模式进行运行。
在需要对Tensor的某些运算进行编译加速时,可以在其定义的函数上使用jit修饰器,在调用该函数时,该模块自动被编译为静态图。需要注意的是,jit装饰器只能用来修饰函数,无法对类进行修饰。jit的使用示例如下:
import numpy as np import mindspore as ms from mindspore import nn, Tensor class Network(nn.Cell): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.dense_relu_sequential = nn.SequentialCell( nn.Dense(28*28, 512), nn.ReLU(), nn.Dense(512, 512), nn.ReLU(), nn.Dense(512, 10) ) def construct(self, x): x = self.flatten(x) logits = self.dense_relu_sequential(x) return logits input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32)) @ms.jit # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行 def run(x): model = Network() return model(x) output = run(input) print(output)
运行结果:
[[ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087] [ 0.1252139 0.04581339 0.0738193 0.05624225 -0.16909821 0.06049951 -0.23870054 -0.16575325 -0.0028802 0.07817087]]
除使用修饰器外,也可使用函数变换方式调用jit方法,示例如下:
import numpy as np import mindspore as ms from mindspore import nn, Tensor class Network(nn.Cell): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.dense_relu_sequential = nn.SequentialCell( nn.Dense(28*28, 512), nn.ReLU(), nn.Dense(512, 512), nn.ReLU(), nn.Dense(512, 10) ) def construct(self, x): x = self.flatten(x) logits = self.dense_relu_sequential(x) return logits input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32)) def run(x): model = Network() return model(x) run_with_jit = ms.jit(run) # 通过调用jit将函数转换为以静态图方式执行 output = run(input) print(output)
运行结果
[[-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427] [-0.10622732 -0.09094816 -0.11432757 -0.13232405 -0.03260136 -0.12981798 -0.03416808 0.14421274 0.03140517 0.22961427]]
当我们需要对神经网络的某部分进行加速时,可以直接在construct方法上使用jit修饰器,在调用实例化对象时,该模块自动被编译为静态图。示例如下:
import numpy as np import mindspore as ms from mindspore import nn, Tensor class Network(nn.Cell): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.dense_relu_sequential = nn.SequentialCell( nn.Dense(28*28, 512), nn.ReLU(), nn.Dense(512, 512), nn.ReLU(), nn.Dense(512, 10) ) @ms.jit # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行 def construct(self, x): x = self.flatten(x) logits = self.dense_relu_sequential(x) return logits input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32)) model = Network() output = model(input) print(output)
运行结果
[[ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096] [ 0.17366177 -0.11818913 -0.07235572 0.16754873 -0.22531462 -0.12066163 0.07827738 -0.02126503 -0.00560445 0.05143096]]
context模式是一种全局的设置模式。代码示例如下:
import numpy as np import mindspore as ms from mindspore import nn, Tensor ms.set_context(mode=ms.GRAPH_MODE) # 使用set_context进行运行静态图模式的配置 class Network(nn.Cell): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.dense_relu_sequential = nn.SequentialCell( nn.Dense(28*28, 512), nn.ReLU(), nn.Dense(512, 512), nn.ReLU(), nn.Dense(512, 10) ) def construct(self, x): x = self.flatten(x) logits = self.dense_relu_sequential(x) return logits model = Network() input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32)) output = model(input) print(output)
运行结果
[[ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ] [ 0.08628678 0.00500585 -0.02423782 0.09541748 -0.0024861 0.10121399 -0.07218124 -0.00624439 -0.10380664 0.0130345 ]]
在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。因此,编译器无法支持全量的Python语法。MindSpore的静态图编译器维护了Python常用语法子集,以支持神经网络的构建及训练。详情可参考静态图语法支持。
在图模式下,可以通过使用JitConfig配置选项来一定程度的自定义编译流程,目前JitConfig支持的配置参数如下:
使用静态图高级编程技巧可以有效地提高编译效率以及执行效率,并可以使程序运行的更加稳定。详情可参考静态图高级编程技巧。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。