赞
踩
在本文中,我们将用R语言对数据进行线性混合效应模型的拟合,然后可视化你的结果。
线性混合效应模型是在有随机效应时使用的,随机效应发生在对随机抽样的单位进行多次测量时。来自同一自然组的测量结果本身并不是独立的随机样本。因此,这些单位或群体被假定为从一个群体的 "人口 "中随机抽取的。示例情况包括
当你划分并对各部分进行单独实验时(随机组)。
当你的抽样设计是嵌套的,如横断面内的四分仪;林地内的横断面;地区内的林地(横断面、林地和地区都是随机组)。
当你对相关个体进行测量时(家庭是随机组)。
当你重复测量受试者时(受试者是随机组)。
混合效应的线性模型在R命令lme4和lmerTest包中实现。另一个选择是使用nmle包中的lme方法。lme4中用于计算近似自由度的方法比nmle包中的方法更准确一些,特别是在样本量不大的时候。
这第一个数据集是从Griffith和Sheldon(2001年,《动物行为学》61:987-993)的一篇论文中提取的,他们在两年内对瑞典哥特兰岛上的30只雄性领头鶲的白色额斑进行了测量。该斑块在吸引配偶方面很重要,但其大小每年都有变化。我们在这里的目标是估计斑块长度(毫米)。
从文件中读取数据。
查看数据的前几行,看是否正确读取。
创建一个显示两年研究中每只飞鸟的测量对图。可以尝试制作点阵图。是否有证据表明不同年份之间存在着测量变异性?
对数据进行线性混合效应模型,将单个鸟类视为随机组。注:对每只鸟的两次测量是在研究的连续年份进行的。为了简单起见,在模型中不包括年份。在R中把它转换成一个字符或因子,这样它就不会被当作一个数字变量。按照下面步骤(2)和(3)所述,用这个模型重新计算可重复性。重复性的解释如何改变?
从保存的lmer对象中提取参数估计值(系数)。检查随机效应的输出。随机变异的两个来源是什么?固定效应指的是什么?
在输出中,检查随机效应的标准差。应该有两个标准差:一个是"(截距)",一个是 "残差"。这是因为混合效应模型有两个随机变异的来源:鸟类内部重复测量的差异,以及鸟类之间额斑长度的真实差异。这两个来源中的哪一个对应于"(截距)",哪一个对应于 "残差"?
同时检查固定效应结果的输出。模型公式中唯一的固定效应是所有长度测量的平均值。它被称为"(截距)",但不要与随机效应的截距相混淆。固定效应输出给了你平均值的估计值和该估计值的标准误差。注意固定效应输出是如何提供均值估计值的,而随机效应输出则提供方差(或标准差)的估计值。
从拟合模型中提取方差分量,估计各年斑块长度的可重复性*。
解释上一步中获得的重复性测量结果。如果你得到的重复性小于1.0,那么个体内测量结果之间的变化来源是什么。仅是测量误差吗?
产生一个残差与拟合值的图。注意到有什么问题?似乎有一个轻微的正向趋势。这不是一个错误,而是最佳线性无偏预测器(BLUPs)"收缩 "的结果。
读取并检查数据。
head(fly)
- # 点阵图
- chart(patch ~ bird)
- # 但显示成对数据的更好方法是用成对的交互图来显示
- plot(res=patch, x = year)
- # 优化版本
- plot(y = patch, x = factor(year), theme_classic)
拟合一个线性混合效应模型。summary()的输出将显示两个随机变异的来源:单个鸟类之间的变异(鸟类截距),以及对同一鸟类进行的重复测量之间的变异(残差)。每个来源都有一个估计的方差和标准差。固定效应只是所有鸟类的平均值--另一个 "截距"。
点击标题查阅往期内容
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。