赞
踩
给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
输入:[0,0,null,0,0]
输出:1
解释:如图所示,一台摄像头足以监控所有节点。
输入:[0,0,null,0,null,0,null,null,0]
输出:2
解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。
提示:
[1, 1000]
。本题一个重要思路是,二叉树中一定是叶子节点数量大于根节点数量的。叶子节点和根节点比起来,数量呈现指数级的扩大,因此我们想要用最少的摄像头,就要在叶子节点上优先想如何节约摄像头。
在叶子节点的情况下,我们要优先在叶子节点的父节点上放摄像头,然后一层一层往上推,往上推的逻辑是每隔2个节点放一个摄像头。
因为我们从叶子节点开始,从下往上处理二叉树,所以一定是后序遍历。遍历的同时,我们需要记录每个节点的状态,从而根据左右孩子的状态去确定父节点的状态。
这里就涉及到一个状态转移的问题,但是本题的状态转移和动规的状态转移不同,本题只是涉及到一个每个节点状态的判断,并不是要得到最优状态。本题中节点有三种状态:
我们在后序遍历的时候,可以通过状态转移,来判断左右孩子是某状态的时候,父节点应该是什么状态。
本题的目的,就是尽可能让叶子节点的父节点去放摄像头,这样摄像头数目才能最少。为了让叶子节点的父节点能放摄像头,空节点应该是有覆盖的状态。
也就是说,遇到空节点应该向上返回2,这样才能让叶子节点父节点有摄像头。
最后一种情况是基于第一种情况,第一种情况的当前节点无覆盖,需要等待父节点去把他覆盖。但是第一种情况的节点,如果是根节点,就没有父节点可以装摄像头!
此时根节点本身必须装一个摄像头,否则根节点就是无覆盖的状态。
本题所有可能的情况就限于这四种。主要是分析出来前三种,第四种是遍历到最后对根节点进行单独的判断。
class Solution {
public:
//摄像头个数
int result=0;
//后序遍历,有返回值,返回当前节点状态
int travelsal(TreeNode* root){
//后序终止条件
if(root==nullptr) return 2;<
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。