当前位置:   article > 正文

Apache Hadoop YARN简介_apache hadoop yarn:

apache hadoop yarn:
Apache Hadoop YARN (Yet Another Resource Negotiator,另一种资源协调者)是 Hadoop2.0中 的资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。
YARN的基本思想是将JobTracker的两个主要功能( ResourceManagement 资源管理和 JobScheduling/JobMonitoring 作业调度/监控)分离,主要方法是创建一个全局的ResourceManager(RM)和若干个针对应用程序的ApplicationMaster(AM)。
YARN 分层结构的本质是 ResourceManager。这个实体控制整个集群并管理应用程序向基础计算资源的分配。ResourceManager 将各个资源部分(计算、内存、带宽等)精心安排给基础 NodeManager(YARN 的每节点代理)。ResourceManager 还与 ApplicationMaster 一起分配资源,与 NodeManager 一起启动和监视它们的基础应用程序。ApplicationMaster 承担了以前的 TaskTracker 的一些角色,ResourceManager 承担了 JobTracker 的角色。
在Yarn中我们把job的概念换成了application,因为在新的Hadoop2.x中,运行的应用不只是MapReduce了,还有可能是其它应用如一个DAG(有向无环图Directed Acyclic Graph,例如storm应用)。Yarn的另一个目标就是拓展hadoop,使得它不仅仅可以支持MapReduce计算,还能很方便的管理诸如Hive、Hbase、Pig、Spark/Shark等应用。这种新的架构设计能够使得各种类型的应用运行在Hadoop上面,并通过Yarn从系统层面进行统一的管理,也就是说,有了Yarn,各种应用就可以互不干扰的运行在同一个Hadoop系统中,共享整个集群资源,如下图所示:

YARN的核心思想
将JobTracker和TaskTacker进行分离,它由下面几大构成组件:
1. 一个全局的资源管理器 ResourceManager
2.ResourceManager的每个节点代理 NodeManager
3. 表示每个应用的 ApplicationMaster
4. 每一个ApplicationMaster拥有多个Container在NodeManager上运行

Yarn的组件详解


ResourceManager(RM)
RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Applications Manager,ASM)。
调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由应用程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念“资源容器”(Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可插拔的组件,用户可根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler和Capacity Scheduler等。
应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。
ApplicationMaster(AM)
用户提交的每个应用程序均包含一个AM,主要功能包括:
1.与RM调度器协商以获取资源(用Container表示);
2.将得到的任务进一步分配给内部的任务(资源的二次分配);
3.与NM通信以启动/停止任务;
4.监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。
当前YARN自带了两个AM实现,一个是用于演示AM编写方法的实例程序distributedshell,它可以申请一定数目的Container以并行运行一个Shell命令或者Shell脚本;另一个是运行MapReduce应用程序的AM—MRAppMaster。
注:RM只负责监控AM,在AM运行失败时候启动它,RM并不负责AM内部任务的容错,这由AM来完成。
NodeManager(NM)
NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接收并处理来自AM的Container启动/停止等各种请求。
Container
Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。
注:1. Container不同于MRv1中的slot,它是一个动态资源划分单位,是根据应用程序的需求动态生成的。
2. 现在YARN仅支持CPU和内存两种资源,且使用了轻量级资源隔离机制Cgroups进行资源隔离。
YARN的资源管理和执行框架都是按主/从范例实现的——Slave ---节点管理器(NM)运行、监控每个节点,并向集群的Master---资源管理器(RM)报告资源的可用性状态,资源管理器最终为系统里所有应用分配资源。
特定应用的执行由ApplicationMaster控制,ApplicationMaster负责将一个应用分割成多个任务,并和资源管理器协调执行所需的资源,资源一旦分配好,ApplicationMaster就和节点管理器一起安排、执行、监控独立的应用任务。
需要说明的是, YARN不同服务组件的通信方式采用了事件驱动的异步并发机制,这样可以简化系统的设计。

Yarn应用提交过程分析
Application在Yarn中的整个执行过程可以总结为三步:
1. 应用程序提交
2. 启动应用的ApplicationMaster实例
3. ApplicationMaster实例管理应用程序的执行




1.客户端程序向ResourceManager提交应用并请求一个ApplicationMaster实例
2.ResourceManager找到可以运行一个Container的NodeManager,并在这个Container中启动ApplicationMaster实例
3.ApplicationMaster向ResourceManager进行注册,注册之后客户端就可以查询ResourceManager获得自己ApplicationMaster的详细信息,以后就可以和自己的ApplicationMaster直接交互了
4.在平常的操作过程中,ApplicationMaster根据resource-request协议向ResourceManager发送resource-request请求
5.当Container被成功分配之后,ApplicationMaster通过向NodeManager发送container-launch-specification信息来启动Container, container-launch-specification信息包含了能够让Container和ApplicationMaster交流所需要的资料
6.应用程序的代码在启动的Container中运行,并把运行的进度、状态等信息通过application-specific协议发送给ApplicationMaster
7.在应用程序运行期间,提交应用的客户端主动和ApplicationMaster交流获得应用的运行状态、进度更新等信息,交流的协议也是application-specific协议
8.一但应用程序执行完成并且所有相关工作也已经完成,ApplicationMaster向ResourceManager取消注册然后关闭,用到所有的Container也归还给系统
















声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/秋刀鱼在做梦/article/detail/763378
推荐阅读
相关标签
  

闽ICP备14008679号