当前位置:   article > 正文

2024年最全【算法学习】1863,字节跳动外包测试面试题_字节外包面试算法题

字节外包面试算法题

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

+ [python](#python_170)
+ [go](#go_185)
+ [rust](#rust_203)
  • 1
  • 2
  • 3

1863. 找出所有子集的异或总和再求和:

一个数组的 异或总和 定义为数组中所有元素按位 XOR 的结果;如果数组为 空 ,则异或总和为 0 。

  • 例如,数组 [2,5,6] 的 异或总和 为 2 XOR 5 XOR 6 = 1 。
    给你一个数组 nums ,请你求出 nums 中每个 子集 的 异或总和 ,计算并返回这些值相加之 和 。

注意:在本题中,元素 相同 的不同子集应 多次 计数。

数组 a 是数组 b 的一个 子集 的前提条件是:从 b 删除几个(也可能不删除)元素能够得到 a 。

样例 1

输入:
	nums = [1,3]
输出:
	6
解释:
	[1,3] 共有 4 个子集:
	空子集的异或总和是 0 。
	[1] 的异或总和为 1 。
	[3] 的异或总和为 3 。
	[1,3] 的异或总和为 1 XOR 3 = 2 。
	0 + 1 + 3 + 2 = 6

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

样例 2

输入:
	nums = [5,1,6]
输出:
	28
解释:
	[5,1,6] 共有 8 个子集:
	空子集的异或总和是 0 。
	[5] 的异或总和为 5 。
	[1] 的异或总和为 1 。
	[6] 的异或总和为 6 。
	[5,1] 的异或总和为 5 XOR 1 = 4 。
	[5,6] 的异或总和为 5 XOR 6 = 3 。
	[1,6] 的异或总和为 1 XOR 6 = 7 。
	[5,1,6] 的异或总和为 5 XOR 1 XOR 6 = 2 。
	0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

样例 3

输入:
	nums = [3,4,5,6,7,8]
输出:
	480
解释:
	每个子集的全部异或总和值之和为 480 。

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

提示

  • 1 <= nums.length <= 12
  • 1 <= nums[i] <= 20

分析

  1. 直接按照题意照做
  • 穷举所有可能的子集,O(2n)的时间复杂度,慢了,但是能做出来至少说明基础良好吧,不过这是算法题,讨厌了,得优化。
  1. 找到内在规律
  • 这题欺负数学不好的同学,没关系,二当家的想办法不用专业数学知识去解释。
  • 多个数做异或操作就是看每个位上1的数量是奇数,还是偶数,0没有贡献(0和x异或,结果就是x,对于x相当于没做操作)。
  • 在其他所选数字不变的情况下,多选一个1和少选一个1,其中一定一个是奇数个1,另外一个是偶数个1。
  • 所以只要某一位上有一个1出现,那么子集中一定一半是奇数个1,一半是偶数个1。
  • 从数组里穷举子集,每个数字只有2种选择(选择它和不选它),一共有2n个子集,所以每个数字被选中2n-1次,所以每个数字中那些为1的位,也是做出2n-1次运算贡献哦。
  • x * 2n-1相当于x << (n - 1)。
  • 别问我为什么,问就是,因为所以,科学原理。

题解

java

题目说什么,我们干什么的方式

class Solution {
    public int subsetXORSum(int[] nums) {
        int ans = 0;

        // 数字个数
        final int n    = nums.length;
        // 用每一位表示某个数字是否被选中
        final int bits = 1 << n;

        for (int b = 0; b < bits; ++b) {
            int temp = 0;
            for (int i = 0; i < n; ++i) {
                if ((b & (1 << i)) > 0) {
                    temp ^= nums[i];
                }
            }
            ans += temp;
        }

        return ans;
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

利用规律的方法

class Solution {
    public int subsetXORSum(int[] nums) {
        int bits = 0;

        // 所有位上出现过1的数
        for (int num : nums) {
            bits |= num;
        }

        // 这些1乘以贡献次数
        return bits << (nums.length - 1);
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

c

int subsetXORSum(int\* nums, int numsSize){
    int bits = 0;

    // 所有位上出现过1的数
    for (int i = 0; i < numsSize; ++i) {
        bits |= nums[i];
    }

    // 这些1乘以贡献次数
    return bits << (numsSize - 1);
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

c++

最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~

给大家准备的学习资料包括但不限于:

Python 环境、pycharm编辑器/永久激活/翻译插件

python 零基础视频教程

Python 界面开发实战教程

Python 爬虫实战教程

Python 数据分析实战教程

python 游戏开发实战教程

Python 电子书100本

Python 学习路线规划

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号