赞
踩
_Anaconda
Python3.7
pycharm_
Anaconda完美的集合了像咱们的一些算法库,以及像我们的做数据可视化数据分析,这些都比较完美,像描述性分析和预测性分析,还有像判断分析决策性分析都可以来做的一个工具。
import pandas as pd # 数据处理
from pyecharts.charts import * # 可视化图表
from pyecharts import options as opts
df = pd.read_csv(‘./中国大学综合排名2021.csv’, encoding=‘gb2312’)
df.describe()
df.isnull().sum()
df.fillna(0, inplace=True)
df.isnull().sum()
df[df[‘升/降’] == 0]
df.loc[(df[‘排名’] < 50) & (df[‘升/降’] < 0), :]
g = df.groupby(‘省市’)
df_counts = g.count()[‘排名’]
df0 = df_counts.copy()
df0.sort_values(ascending=False, inplace=True)
df_mean0 = g.mean()[‘总分’]
df_means = df_mean0.round(2)
df1 = pd.concat([df_counts, df_means], join=‘outer’, axis=1)
df1.columns = [‘数量’, ‘平均分’]
df1.sort_values(by=[‘平均分’], ascending=False, inplace=True)
d1 = df1.index.tolist()
d2 = df1[‘数量’].values.tolist()
d3 = df1[‘平均分’].values.tolist()
bar0 = (
Bar()
.add_xaxis(d1)
.add_yaxis(‘数量’, d2)
.add_yaxis(‘平均分’, d3)
.reversal_axis()
.set_series_opts(label_opts=opts.LabelOpts(position=‘right’))
)
bar0.render_notebook()
name = df_counts.index.tolist()
count = df_counts.values.tolist()
c0 = (
Pie()
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!**
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。