当前位置:   article > 正文

吴恩达471机器学习入门课程2第1周——手写数字识别(0和1)_吴恩达手写数字识别

吴恩达手写数字识别

使用神经网络来识别手写数字 0 和 1。

问题描述

在这个练习中,您将使用神经网络来识别手写数字“0”和“1”。这是一个二元分类任务。
自动手写数字识别在今天被广泛使用——从识别邮件信封上的邮政编码到识别银行支票上写的金额。
在未来的任务中,您将扩展此网络以识别所有10个数字(0-9)。

这个练习将向您展示如何使用您所学的方法来完成这个分类任务。

1.导入模块

import numpy as np
import tensorflow as tf
from tensorflow.python import keras
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
from autils import *
%matplotlib inline

import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

2. 数据集

您将从加载此任务的数据集开始。

  • 下面显示的load_data()函数将数据加载到变量Xy中。
  • 该数据集包含1000个手写数字1的训练示例,仅限于0和1。
    • 每个训练示例都是数字的20像素x 20像素灰度图像。
      • 每个像素由浮点数表示,表示该位置的灰度强度。
      • 20x20像素网格被“展开”为400维向量。
      • 每个训练示例成为我们的数据矩阵X中的一行。
      • 这给了我们一个1000 x 400的矩阵X,其中每一行都是手写数字图像的训练示例。
    • 训练集的第二部分是一个1000 x 1的向量y,它包含训练集的标签。
      • 如果图像是数字0,则y = 0,如果图像是数字1,则y = 1
x,y = load_data()
  • 1

2.1 数据可视化

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)


m, n = x.shape

fig, axes = plt.subplots(8,8, figsize=(8,8))
fig.tight_layout(pad=0.1)

for i,ax in enumerate(axes.flat):
    random_index = np.random.randint(1000)
    X_random_reshaped = x[random_index].reshape((20,20)).T
    ax.imshow(X_random_reshaped, cmap='gray')
    ax.set_title(f"id:{random_index},{y[random_index,0]}")
    ax.set_axis_off()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

png

3 模型展示

您将在本作业中使用的神经网络如下图所示。

  • 三个全连接层,激活函数为sigmoid
    • 回想一下,我们的输入是数字图像的像素值。
    • 由于图像的大小为 20 × 20 20\times20 20×20,这给了我们 400 400 400 的输入
  • 这些参数的维度大小适用于神经网络,第 1 层神经元为 25个 ,第 2 层神经元为 15个,第 3 层输出层为 1 个神经元。
    • 回想一下,这些参数的尺寸确定如下:
      • 如果网络在一层中有 s i n s_{in} sin 单位,在下一层中有 s o u t s_{out} sout 单位,则
        • W W W▁的维数为▁ s i n ▁ × ▁ s o u t s_{in}▁\times▁s_{out} sin×sout
        • b b b 将是一个包含 s o u t s_{out} sout 元素的向量
    • 因此,Wb的形状是
      • layer1:W1的形状是(400,25),b1的形状是(25,)
      • layer2:W2的形状是(25,15),b2的形状是:(15,)
      • layer3: W3 的形状是 (15, 1) b3 的形状是: (1,)

Note: 偏置向量b可以表示为一维(n)或二维(n,1)数组。Tensorflow使用一维表示,本实验室将保持该约定。

下面,使用Keras顺序模型和具有sigmoid激活的密集层来构建上述网络。

tf.random.set_seed(1234)
model = Sequential(
    [
        tf.keras.Input(shape=(400,)),
        Dense(25,activation="sigmoid",name="layer1"),
        Dense(15,activation="sigmoid",name="layer2"),
        Dense(1,activation="sigmoid",name="layer3")
    ]
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
model.summary()
  • 1
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 layer1 (Dense)              (None, 25)                10025     
                                                                 
 layer2 (Dense)              (None, 15)                390       
                                                                 
 layer3 (Dense)              (None, 1)                 16        
                                                                 
=================================================================
Total params: 10,431
Trainable params: 10,431
Non-trainable params: 0
_________________________________________________________________
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
w1,b1 = model.get_layer('layer1').get_weights()
w2,b2 = model.get_layer('layer2').get_weights()
w3,b3 = model.get_layer('layer3').get_weights()
  • 1
  • 2
  • 3
model.compile(
    loss=tf.keras.losses.BinaryCrossentropy(),
    optimizer= tf.keras.optimizers.Adam(learning_rate=0.001)
)
model.fit(
    x,y,
    epochs=20
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Epoch 1/20
32/32 [==============================] - 1s 2ms/step - loss: 0.6223
Epoch 2/20
32/32 [==============================] - 0s 2ms/step - loss: 0.4593
Epoch 3/20
32/32 [==============================] - 0s 2ms/step - loss: 0.3129
Epoch 4/20
32/32 [==============================] - 0s 2ms/step - loss: 0.2148
Epoch 5/20
32/32 [==============================] - 0s 2ms/step - loss: 0.1557
Epoch 6/20
32/32 [==============================] - 0s 2ms/step - loss: 0.1193
Epoch 7/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0956
Epoch 8/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0787
Epoch 9/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0665
Epoch 10/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0571
Epoch 11/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0499
Epoch 12/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0440
Epoch 13/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0394
Epoch 14/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0355
Epoch 15/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0323
Epoch 16/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0297
Epoch 17/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0274
Epoch 18/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0255
Epoch 19/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0238
Epoch 20/20
32/32 [==============================] - 0s 2ms/step - loss: 0.0224





<keras.callbacks.History at 0x17a7a949ca0>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

输入的是1000/time400数据,也就是说每个数据是400个像素点的灰度值。那预测也是输出400个像素点的灰度值

prediction = np.zeros(x.shape[0])
yhat = np.zeros(x.shape[0])
for i in range(x.shape[0]):
    prediction[i] = model.predict(x[i].reshape(1,400))
    if prediction[i] >0.5:
        yhat[i] = 1
    else:
        yhat[i] = 0
    print(f"num:{i},prediction:{prediction[i]},yhat:{yhat[i]}")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
1/1 [==============================] - 0s 30ms/step
num:0,prediction:0.017245078459382057,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:1,prediction:0.017561491578817368,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:2,prediction:0.018371105194091797,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:3,prediction:0.016776276752352715,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:4,prediction:0.016123982146382332,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:5,prediction:0.01637193374335766,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:6,prediction:0.016457650810480118,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:7,prediction:0.022780779749155045,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:8,prediction:0.01629982516169548,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:9,prediction:0.01717321388423443,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:10,prediction:0.016451770439743996,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:11,prediction:0.0167677141726017,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:12,prediction:0.016313461586833,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:13,prediction:0.01943032070994377,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:14,prediction:0.01611424796283245,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:15,prediction:0.01825297810137272,yhat:0.0
1/1 [==============================] - 0s 37ms/step
num:16,prediction:0.016284190118312836,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:17,prediction:0.016130782663822174,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:18,prediction:0.01709396205842495,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:19,prediction:0.016696887090802193,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:20,prediction:0.01634596846997738,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:21,prediction:0.01664787344634533,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:22,prediction:0.016392642632126808,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:23,prediction:0.02348409779369831,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:24,prediction:0.017231397330760956,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:25,prediction:0.016674473881721497,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:26,prediction:0.022125374525785446,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:27,prediction:0.017969287931919098,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:28,prediction:0.02634265273809433,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:29,prediction:0.016846399754285812,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:30,prediction:0.031125672161579132,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:31,prediction:0.016067367047071457,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:32,prediction:0.016007831320166588,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:33,prediction:0.016938723623752594,yhat:0.0
1/1 [==============================] - 0s 42ms/step
num:34,prediction:0.01603429950773716,yhat:0.0
1/1 [==============================] - 0s 37ms/step
num:35,prediction:0.016739122569561005,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:36,prediction:0.016892068088054657,yhat:0.0
1/1 [==============================] - 0s 41ms/step
num:37,prediction:0.016361510381102562,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:38,prediction:0.016079727560281754,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:39,prediction:0.01598520390689373,yhat:0.0
1/1 [==============================] - 0s 41ms/step
num:40,prediction:0.016060268506407738,yhat:0.0
1/1 [==============================] - 0s 43ms/step
num:41,prediction:0.01620468869805336,yhat:0.0
1/1 [==============================] - 0s 37ms/step
num:42,prediction:0.016878359019756317,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:43,prediction:0.017137937247753143,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:44,prediction:0.016577575355768204,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:45,prediction:0.01610025390982628,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:46,prediction:0.016063405200839043,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:47,prediction:0.016535844653844833,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:48,prediction:0.016592493280768394,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:49,prediction:0.017822986468672752,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:50,prediction:0.016215838491916656,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:51,prediction:0.0169497262686491,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:52,prediction:0.016163570806384087,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:53,prediction:0.020042218267917633,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:54,prediction:0.01649058610200882,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:55,prediction:0.016248555853962898,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:56,prediction:0.017766578122973442,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:57,prediction:0.01761326566338539,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:58,prediction:0.017266323789954185,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:59,prediction:0.016809478402137756,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:60,prediction:0.017408236861228943,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:61,prediction:0.01649508811533451,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:62,prediction:0.01637432351708412,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:63,prediction:0.017571480944752693,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:64,prediction:0.017696693539619446,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:65,prediction:0.0186854749917984,yhat:0.0
1/1 [==============================] - 0s 40ms/step
num:66,prediction:0.01718735322356224,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:67,prediction:0.016224784776568413,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:68,prediction:0.016111481934785843,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:69,prediction:0.016442498192191124,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:70,prediction:0.01623695157468319,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:71,prediction:0.023496320471167564,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:72,prediction:0.016141844913363457,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:73,prediction:0.01607038453221321,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:74,prediction:0.016357596963644028,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:75,prediction:0.018435921519994736,yhat:0.0
1/1 [==============================] - 0s 46ms/step
num:76,prediction:0.016096316277980804,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:77,prediction:0.0162007138133049,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:78,prediction:0.016959739848971367,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:79,prediction:0.017740044742822647,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:80,prediction:0.016511909663677216,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:81,prediction:0.016509629786014557,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:82,prediction:0.0161502193659544,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:83,prediction:0.016359636560082436,yhat:0.0
1/1 [==============================] - 0s 37ms/step
num:84,prediction:0.017039254307746887,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:85,prediction:0.017194580286741257,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:86,prediction:0.01907038874924183,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:87,prediction:0.02024783194065094,yhat:0.0
1/1 [==============================] - 0s 50ms/step
num:88,prediction:0.016284402459859848,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:89,prediction:0.033625077456235886,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:90,prediction:0.016522077843546867,yhat:0.0
1/1 [==============================] - 0s 40ms/step
num:91,prediction:0.017036596313118935,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:92,prediction:0.018160220235586166,yhat:0.0
1/1 [==============================] - 0s 58ms/step
num:93,prediction:0.018483711406588554,yhat:0.0
1/1 [==============================] - 0s 40ms/step
num:94,prediction:0.018068769946694374,yhat:0.0
1/1 [==============================] - 0s 39ms/step
num:95,prediction:0.019471772015094757,yhat:0.0
1/1 [==============================] - 0s 42ms/step
num:96,prediction:0.01907133124768734,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:97,prediction:0.017415348440408707,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:98,prediction:0.020283477380871773,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:99,prediction:0.016813671216368675,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:100,prediction:0.018155818805098534,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:101,prediction:0.025152625516057014,yhat:0.0
1/1 [==============================] - 0s 27ms/step
num:102,prediction:0.016127075999975204,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:103,prediction:0.027865607291460037,yhat:0.0
1/1 [==============================] - 0s 40ms/step
num:104,prediction:0.018268810585141182,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:105,prediction:0.016672994941473007,yhat:0.0
1/1 [==============================] - 0s 37ms/step
num:106,prediction:0.016338566318154335,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:107,prediction:0.01726091094315052,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:108,prediction:0.016999393701553345,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:109,prediction:0.018879085779190063,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:110,prediction:0.016831107437610626,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:111,prediction:0.01941811852157116,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:112,prediction:0.04043545201420784,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:113,prediction:0.01662745699286461,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:114,prediction:0.025899766013026237,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:115,prediction:0.016201207414269447,yhat:0.0
1/1 [==============================] - 0s 41ms/step
num:116,prediction:0.016879726201295853,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:117,prediction:0.0162897277623415,yhat:0.0
1/1 [==============================] - 0s 38ms/step
num:118,prediction:0.016804514452815056,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:119,prediction:0.016818244010210037,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:120,prediction:0.01787511445581913,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:121,prediction:0.01698533445596695,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:122,prediction:0.01737474463880062,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:123,prediction:0.016885021701455116,yhat:0.0
1/1 [==============================] - 0s 40ms/step
num:124,prediction:0.01630372554063797,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:125,prediction:0.015945108607411385,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:126,prediction:0.01651945896446705,yhat:0.0
1/1 [==============================] - 0s 41ms/step
num:127,prediction:0.016002554446458817,yhat:0.0
1/1 [==============================] - 0s 37ms/step
num:128,prediction:0.016011865809559822,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:129,prediction:0.019734272733330727,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:130,prediction:0.01661784015595913,yhat:0.0
1/1 [==============================] - 0s 43ms/step
num:131,prediction:0.02895568124949932,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:132,prediction:0.01622382551431656,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:133,prediction:0.020689470693469048,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:134,prediction:0.01627187989652157,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:135,prediction:0.0200660303235054,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:136,prediction:0.016174770891666412,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:137,prediction:0.016026921570301056,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:138,prediction:0.016009168699383736,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:139,prediction:0.016030168160796165,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:140,prediction:0.016872338950634003,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:141,prediction:0.01637536659836769,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:142,prediction:0.9789202809333801,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:143,prediction:0.016149356961250305,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:144,prediction:0.01765367202460766,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:145,prediction:0.016684124246239662,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:146,prediction:0.01633056439459324,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:147,prediction:0.016345493495464325,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:148,prediction:0.017068807035684586,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:149,prediction:0.017162105068564415,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:150,prediction:0.03852102532982826,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:151,prediction:0.016413697972893715,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:152,prediction:0.017252160236239433,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:153,prediction:0.01705537922680378,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:154,prediction:0.01798139326274395,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:155,prediction:0.01663612760603428,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:156,prediction:0.016104625537991524,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:157,prediction:0.01604732684791088,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:158,prediction:0.016689768061041832,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:159,prediction:0.016168003901839256,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:160,prediction:0.01612755097448826,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:161,prediction:0.01641443744301796,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:162,prediction:0.016149962320923805,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:163,prediction:0.016300657764077187,yhat:0.0
1/1 [==============================] - 0s 45ms/step
num:164,prediction:0.01637859456241131,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:165,prediction:0.016312289983034134,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:166,prediction:0.016731424257159233,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:167,prediction:0.0162845179438591,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:168,prediction:0.016255652531981468,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:169,prediction:0.018183596432209015,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:170,prediction:0.017143946141004562,yhat:0.0
1/1 [==============================] - 0s 42ms/step
num:171,prediction:0.01744820736348629,yhat:0.0
1/1 [==============================] - 0s 41ms/step
num:172,prediction:0.01648881658911705,yhat:0.0
1/1 [==============================] - 0s 39ms/step
num:173,prediction:0.016175037249922752,yhat:0.0
1/1 [==============================] - 0s 41ms/step
num:174,prediction:0.016100026667118073,yhat:0.0
1/1 [==============================] - 0s 44ms/step
num:175,prediction:0.016103055328130722,yhat:0.0
1/1 [==============================] - 0s 47ms/step
num:176,prediction:0.016306854784488678,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:177,prediction:0.020434509962797165,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:178,prediction:0.016423424705863,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:179,prediction:0.016066841781139374,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:180,prediction:0.02655566670000553,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:181,prediction:0.01605236530303955,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:182,prediction:0.022392697632312775,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:183,prediction:0.01615392602980137,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:184,prediction:0.01600535400211811,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:185,prediction:0.017377186566591263,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:186,prediction:0.016240911558270454,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:187,prediction:0.016009312123060226,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:188,prediction:0.01614195667207241,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:189,prediction:0.016086941584944725,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:190,prediction:0.016034720465540886,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:191,prediction:0.015959803014993668,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:192,prediction:0.01618199795484543,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:193,prediction:0.017065005376935005,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:194,prediction:0.019002381712198257,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:195,prediction:0.015974991023540497,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:196,prediction:0.017086751759052277,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:197,prediction:0.016421576961874962,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:198,prediction:0.01612766459584236,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:199,prediction:0.01621825620532036,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:200,prediction:0.017428237944841385,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:201,prediction:0.016465719789266586,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:202,prediction:0.016532711684703827,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:203,prediction:0.016868138685822487,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:204,prediction:0.016068950295448303,yhat:0.0
1/1 [==============================] - 0s 27ms/step
num:205,prediction:0.016338473185896873,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:206,prediction:0.016094740480184555,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:207,prediction:0.021173015236854553,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:208,prediction:0.016598157584667206,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:209,prediction:0.020215576514601707,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:210,prediction:0.016512170433998108,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:211,prediction:0.016166329383850098,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:212,prediction:0.016090044751763344,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:213,prediction:0.01613602787256241,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:214,prediction:0.018619384616613388,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:215,prediction:0.016500553116202354,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:216,prediction:0.023279063403606415,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:217,prediction:0.01618989370763302,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:218,prediction:0.016573309898376465,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:219,prediction:0.016179416328668594,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:220,prediction:0.01827298477292061,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:221,prediction:0.021705325692892075,yhat:0.0
1/1 [==============================] - 0s 27ms/step
num:222,prediction:0.0162739809602499,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:223,prediction:0.01649351790547371,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:224,prediction:0.01712419092655182,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:225,prediction:0.016308872029185295,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:226,prediction:0.01763334311544895,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:227,prediction:0.016002779826521873,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:228,prediction:0.016899917274713516,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:229,prediction:0.018958760425448418,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:230,prediction:0.01680363155901432,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:231,prediction:0.016185346990823746,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:232,prediction:0.01606239378452301,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:233,prediction:0.016210190951824188,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:234,prediction:0.016476696357131004,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:235,prediction:0.01617990992963314,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:236,prediction:0.01991863176226616,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:237,prediction:0.0161701962351799,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:238,prediction:0.016843847930431366,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:239,prediction:0.01825304515659809,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:240,prediction:0.016082096844911575,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:241,prediction:0.016844525933265686,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:242,prediction:0.017660845071077347,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:243,prediction:0.016874196007847786,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:244,prediction:0.016902349889278412,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:245,prediction:0.01639407128095627,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:246,prediction:0.018598448485136032,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:247,prediction:0.016265712678432465,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:248,prediction:0.02123349905014038,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:249,prediction:0.016731496900320053,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:250,prediction:0.016578003764152527,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:251,prediction:0.016138684004545212,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:252,prediction:0.016158360987901688,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:253,prediction:0.016191747039556503,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:254,prediction:0.016987627372145653,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:255,prediction:0.016391696408391,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:256,prediction:0.019520336762070656,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:257,prediction:0.020848261192440987,yhat:0.0
1/1 [==============================] - 0s 42ms/step
num:258,prediction:0.016518715769052505,yhat:0.0
1/1 [==============================] - 0s 39ms/step
num:259,prediction:0.01702319271862507,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:260,prediction:0.017847809940576553,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:261,prediction:0.028222581371665,yhat:0.0
1/1 [==============================] - 0s 38ms/step
num:262,prediction:0.016476573422551155,yhat:0.0
1/1 [==============================] - 0s 37ms/step
num:263,prediction:0.01669575273990631,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:264,prediction:0.016388775780797005,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:265,prediction:0.023118434473872185,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:266,prediction:0.016377395018935204,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:267,prediction:0.018109843134880066,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:268,prediction:0.01846221461892128,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:269,prediction:0.017262747511267662,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:270,prediction:0.016048504039645195,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:271,prediction:0.017160430550575256,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:272,prediction:0.01716696284711361,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:273,prediction:0.017111314460635185,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:274,prediction:0.01753491349518299,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:275,prediction:0.023106327280402184,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:276,prediction:0.016198836266994476,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:277,prediction:0.016212893649935722,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:278,prediction:0.016411542892456055,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:279,prediction:0.016180220991373062,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:280,prediction:0.01762320101261139,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:281,prediction:0.017253154888749123,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:282,prediction:0.016890667378902435,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:283,prediction:0.017116213217377663,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:284,prediction:0.016521776095032692,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:285,prediction:0.01974695362150669,yhat:0.0
1/1 [==============================] - 0s 39ms/step
num:286,prediction:0.017139799892902374,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:287,prediction:0.01650172658264637,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:288,prediction:0.016415154561400414,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:289,prediction:0.01718778908252716,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:290,prediction:0.016232909634709358,yhat:0.0
1/1 [==============================] - 0s 39ms/step
num:291,prediction:0.016123216599225998,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:292,prediction:0.01824214495718479,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:293,prediction:0.017145808786153793,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:294,prediction:0.016017096117138863,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:295,prediction:0.018067006021738052,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:296,prediction:0.0181257501244545,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:297,prediction:0.016539854928851128,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:298,prediction:0.017077863216400146,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:299,prediction:0.016240425407886505,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:300,prediction:0.01636507175862789,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:301,prediction:0.016928447410464287,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:302,prediction:0.01686871610581875,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:303,prediction:0.016200629994273186,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:304,prediction:0.016406463459134102,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:305,prediction:0.01696106605231762,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:306,prediction:0.016967851668596268,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:307,prediction:0.0178010705858469,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:308,prediction:0.01619638130068779,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:309,prediction:0.016188938170671463,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:310,prediction:0.016274498775601387,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:311,prediction:0.01682123914361,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:312,prediction:0.016041720286011696,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:313,prediction:0.01609739102423191,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:314,prediction:0.01633579097688198,yhat:0.0
1/1 [==============================] - 0s 27ms/step
num:315,prediction:0.016121137887239456,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:316,prediction:0.036198798567056656,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:317,prediction:0.016686368733644485,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:318,prediction:0.016309253871440887,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:319,prediction:0.01646300218999386,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:320,prediction:0.01792033202946186,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:321,prediction:0.016083696857094765,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:322,prediction:0.017724184319376945,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:323,prediction:0.01692008413374424,yhat:0.0
1/1 [==============================] - 0s 27ms/step
num:324,prediction:0.01627662219107151,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:325,prediction:0.016932541504502296,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:326,prediction:0.0198530126363039,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:327,prediction:0.016590019688010216,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:328,prediction:0.022744176909327507,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:329,prediction:0.019965827465057373,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:330,prediction:0.01643611490726471,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:331,prediction:0.016472995281219482,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:332,prediction:0.01604100503027439,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:333,prediction:0.016299884766340256,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:334,prediction:0.016441935673356056,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:335,prediction:0.01645745150744915,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:336,prediction:0.016608785837888718,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:337,prediction:0.01618863269686699,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:338,prediction:0.016152402386069298,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:339,prediction:0.016248000785708427,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:340,prediction:0.016491694375872612,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:341,prediction:0.018088221549987793,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:342,prediction:0.017040636390447617,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:343,prediction:0.01628975011408329,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:344,prediction:0.016081349924206734,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:345,prediction:0.01683313585817814,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:346,prediction:0.017014289274811745,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:347,prediction:0.01628553308546543,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:348,prediction:0.01695944368839264,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:349,prediction:0.01801113598048687,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:350,prediction:0.016625897958874702,yhat:0.0
1/1 [==============================] - 0s 42ms/step
num:351,prediction:0.02205890603363514,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:352,prediction:0.01854807510972023,yhat:0.0
1/1 [==============================] - 0s 39ms/step
num:353,prediction:0.01615656353533268,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:354,prediction:0.01639224961400032,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:355,prediction:0.016565756872296333,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:356,prediction:0.01680653914809227,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:357,prediction:0.01700248382985592,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:358,prediction:0.01800486631691456,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:359,prediction:0.017168836668133736,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:360,prediction:0.016018884256482124,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:361,prediction:0.016823535785079002,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:362,prediction:0.017449766397476196,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:363,prediction:0.020186804234981537,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:364,prediction:0.016401953995227814,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:365,prediction:0.016305360943078995,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:366,prediction:0.017018767073750496,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:367,prediction:0.017553746700286865,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:368,prediction:0.016207532957196236,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:369,prediction:0.016955025494098663,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:370,prediction:0.021118206903338432,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:371,prediction:0.018141767010092735,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:372,prediction:0.01623317413032055,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:373,prediction:0.017669549211859703,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:374,prediction:0.016270902007818222,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:375,prediction:0.016131488606333733,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:376,prediction:0.016936438158154488,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:377,prediction:0.0174862090498209,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:378,prediction:0.017263110727071762,yhat:0.0
1/1 [==============================] - 0s 27ms/step
num:379,prediction:0.01612122170627117,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:380,prediction:0.016795525327324867,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:381,prediction:0.016929319128394127,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:382,prediction:0.01604923978447914,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:383,prediction:0.016247404739260674,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:384,prediction:0.01607155241072178,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:385,prediction:0.017184622585773468,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:386,prediction:0.016123278066515923,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:387,prediction:0.016309430822730064,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:388,prediction:0.017497535794973373,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:389,prediction:0.01738007925450802,yhat:0.0
1/1 [==============================] - 0s 40ms/step
num:390,prediction:0.01647050864994526,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:391,prediction:0.016004392877221107,yhat:0.0
1/1 [==============================] - 0s 37ms/step
num:392,prediction:0.05239718779921532,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:393,prediction:0.017414622008800507,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:394,prediction:0.016238931566476822,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:395,prediction:0.016167117282748222,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:396,prediction:0.016508229076862335,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:397,prediction:0.016010912135243416,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:398,prediction:0.016881516203284264,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:399,prediction:0.016592055559158325,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:400,prediction:0.016558533534407616,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:401,prediction:0.01757751777768135,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:402,prediction:0.016178488731384277,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:403,prediction:0.020914891734719276,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:404,prediction:0.016031065955758095,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:405,prediction:0.019051169976592064,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:406,prediction:0.017281321808695793,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:407,prediction:0.016156593337655067,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:408,prediction:0.01886683516204357,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:409,prediction:0.01622343808412552,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:410,prediction:0.01735752820968628,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:411,prediction:0.017721159383654594,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:412,prediction:0.019249601289629936,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:413,prediction:0.02076847106218338,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:414,prediction:0.017046194523572922,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:415,prediction:0.016758447512984276,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:416,prediction:0.016318727284669876,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:417,prediction:0.016208672896027565,yhat:0.0
1/1 [==============================] - 0s 37ms/step
num:418,prediction:0.016626901924610138,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:419,prediction:0.017316868528723717,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:420,prediction:0.01735450141131878,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:421,prediction:0.016418911516666412,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:422,prediction:0.01720179244875908,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:423,prediction:0.01663404516875744,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:424,prediction:0.016075752675533295,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:425,prediction:0.01654111035168171,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:426,prediction:0.017267826944589615,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:427,prediction:0.01806599833071232,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:428,prediction:0.017431773245334625,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:429,prediction:0.01610485278069973,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:430,prediction:0.016227319836616516,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:431,prediction:0.01648344285786152,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:432,prediction:0.017209364101290703,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:433,prediction:0.016023829579353333,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:434,prediction:0.016837161034345627,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:435,prediction:0.016101213172078133,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:436,prediction:0.01605096273124218,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:437,prediction:0.01669360138475895,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:438,prediction:0.016005316749215126,yhat:0.0
1/1 [==============================] - 0s 38ms/step
num:439,prediction:0.01618169993162155,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:440,prediction:0.016989953815937042,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:441,prediction:0.01742485910654068,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:442,prediction:0.016039106994867325,yhat:0.0
1/1 [==============================] - 0s 45ms/step
num:443,prediction:0.019868139177560806,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:444,prediction:0.016027718782424927,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:445,prediction:0.016001194715499878,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:446,prediction:0.024049345403909683,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:447,prediction:0.017253009602427483,yhat:0.0
1/1 [==============================] - 0s 27ms/step
num:448,prediction:0.0165729820728302,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:449,prediction:0.021579040214419365,yhat:0.0
1/1 [==============================] - 0s 37ms/step
num:450,prediction:0.016562245786190033,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:451,prediction:0.016834137961268425,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:452,prediction:0.017566010355949402,yhat:0.0
1/1 [==============================] - 0s 34ms/step
num:453,prediction:0.01752990484237671,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:454,prediction:0.018166670575737953,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:455,prediction:0.016104497015476227,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:456,prediction:0.01716996543109417,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:457,prediction:0.016738392412662506,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:458,prediction:0.017075253650546074,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:459,prediction:0.017436036840081215,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:460,prediction:0.018019216135144234,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:461,prediction:0.024734998121857643,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:462,prediction:0.016846098005771637,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:463,prediction:0.016241172328591347,yhat:0.0
1/1 [==============================] - 0s 33ms/step
num:464,prediction:0.015944279730319977,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:465,prediction:0.017179220914840698,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:466,prediction:0.01670248620212078,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:467,prediction:0.01688382588326931,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:468,prediction:0.016124162822961807,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:469,prediction:0.01626569963991642,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:470,prediction:0.01699484884738922,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:471,prediction:0.020937660709023476,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:472,prediction:0.016176700592041016,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:473,prediction:0.016465332359075546,yhat:0.0
1/1 [==============================] - 0s 32ms/step
num:474,prediction:0.016334405168890953,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:475,prediction:0.016959795728325844,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:476,prediction:0.016519319266080856,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:477,prediction:0.016157465055584908,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:478,prediction:0.019252551719546318,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:479,prediction:0.016099413856863976,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:480,prediction:0.016405079513788223,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:481,prediction:0.016188178211450577,yhat:0.0
1/1 [==============================] - 0s 31ms/step
num:482,prediction:0.01613224484026432,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:483,prediction:0.016749288886785507,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:484,prediction:0.0194172915071249,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:485,prediction:0.016224922612309456,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:486,prediction:0.016490835696458817,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:487,prediction:0.016072547063231468,yhat:0.0
1/1 [==============================] - 0s 27ms/step
num:488,prediction:0.09310002624988556,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:489,prediction:0.016562743112444878,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:490,prediction:0.01655920036137104,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:491,prediction:0.01631716638803482,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:492,prediction:0.01639964058995247,yhat:0.0
1/1 [==============================] - 0s 27ms/step
num:493,prediction:0.016003379598259926,yhat:0.0
1/1 [==============================] - 0s 30ms/step
num:494,prediction:0.016308825463056564,yhat:0.0
1/1 [==============================] - 0s 27ms/step
num:495,prediction:0.01643887534737587,yhat:0.0
1/1 [==============================] - 0s 29ms/step
num:496,prediction:0.023704467341303825,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:497,prediction:0.01615484245121479,yhat:0.0
1/1 [==============================] - 0s 36ms/step
num:498,prediction:0.016307855024933815,yhat:0.0
1/1 [==============================] - 0s 35ms/step
num:499,prediction:0.01652761735022068,yhat:0.0
1/1 [==============================] - 0s 28ms/step
num:500,prediction:0.9837687015533447,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:501,prediction:0.9837673306465149,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:502,prediction:0.9822111129760742,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:503,prediction:0.9823277592658997,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:504,prediction:0.9837431311607361,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:505,prediction:0.9617587327957153,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:506,prediction:0.983970582485199,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:507,prediction:0.9835327863693237,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:508,prediction:0.9840206503868103,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:509,prediction:0.9761914610862732,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:510,prediction:0.9830250144004822,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:511,prediction:0.9839810132980347,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:512,prediction:0.9845152497291565,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:513,prediction:0.9837027788162231,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:514,prediction:0.9824003577232361,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:515,prediction:0.9794806241989136,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:516,prediction:0.984229564666748,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:517,prediction:0.9837557673454285,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:518,prediction:0.9843952059745789,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:519,prediction:0.9815965294837952,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:520,prediction:0.9845429062843323,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:521,prediction:0.9517123103141785,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:522,prediction:0.9834197163581848,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:523,prediction:0.9834423661231995,yhat:1.0
1/1 [==============================] - 0s 40ms/step
num:524,prediction:0.9847230315208435,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:525,prediction:0.9832308888435364,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:526,prediction:0.9828717708587646,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:527,prediction:0.9834468960762024,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:528,prediction:0.9837309718132019,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:529,prediction:0.9845497608184814,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:530,prediction:0.9845696687698364,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:531,prediction:0.9028892517089844,yhat:1.0
1/1 [==============================] - 0s 40ms/step
num:532,prediction:0.9842604994773865,yhat:1.0
1/1 [==============================] - 0s 36ms/step
num:533,prediction:0.9828925728797913,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:534,prediction:0.9846811294555664,yhat:1.0
1/1 [==============================] - 0s 42ms/step
num:535,prediction:0.9839844703674316,yhat:1.0
1/1 [==============================] - 0s 42ms/step
num:536,prediction:0.9794805645942688,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:537,prediction:0.9828395843505859,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:538,prediction:0.983814001083374,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:539,prediction:0.9833202362060547,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:540,prediction:0.9831223487854004,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:541,prediction:0.9844914674758911,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:542,prediction:0.9843477010726929,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:543,prediction:0.9842270016670227,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:544,prediction:0.9841589331626892,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:545,prediction:0.984724760055542,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:546,prediction:0.9810100793838501,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:547,prediction:0.9829317331314087,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:548,prediction:0.9839573502540588,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:549,prediction:0.9778997302055359,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:550,prediction:0.9839000105857849,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:551,prediction:0.9820296168327332,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:552,prediction:0.9817571043968201,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:553,prediction:0.9833362102508545,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:554,prediction:0.9847509264945984,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:555,prediction:0.9837663173675537,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:556,prediction:0.9835318326950073,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:557,prediction:0.9835300445556641,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:558,prediction:0.9826015830039978,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:559,prediction:0.9844306707382202,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:560,prediction:0.9822839498519897,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:561,prediction:0.9610229730606079,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:562,prediction:0.9832315444946289,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:563,prediction:0.9820884466171265,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:564,prediction:0.9755810499191284,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:565,prediction:0.9839656949043274,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:566,prediction:0.983728289604187,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:567,prediction:0.9831289052963257,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:568,prediction:0.9823328852653503,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:569,prediction:0.9663757681846619,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:570,prediction:0.9780314564704895,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:571,prediction:0.982735276222229,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:572,prediction:0.9820629954338074,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:573,prediction:0.9836164712905884,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:574,prediction:0.9845355153083801,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:575,prediction:0.9840922951698303,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:576,prediction:0.9842454791069031,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:577,prediction:0.981086790561676,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:578,prediction:0.9838045239448547,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:579,prediction:0.9793835878372192,yhat:1.0
1/1 [==============================] - 0s 41ms/step
num:580,prediction:0.9839344620704651,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:581,prediction:0.9817115664482117,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:582,prediction:0.9804649949073792,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:583,prediction:0.9830085039138794,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:584,prediction:0.9833602905273438,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:585,prediction:0.9847067594528198,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:586,prediction:0.9826359152793884,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:587,prediction:0.9840223789215088,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:588,prediction:0.9846174120903015,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:589,prediction:0.9841127395629883,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:590,prediction:0.9830353260040283,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:591,prediction:0.9841166734695435,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:592,prediction:0.97913658618927,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:593,prediction:0.983948826789856,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:594,prediction:0.9843569993972778,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:595,prediction:0.9837751388549805,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:596,prediction:0.9836570620536804,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:597,prediction:0.9835240244865417,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:598,prediction:0.9837013483047485,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:599,prediction:0.9832313060760498,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:600,prediction:0.9841309785842896,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:601,prediction:0.9837493896484375,yhat:1.0
1/1 [==============================] - 0s 40ms/step
num:602,prediction:0.9834966063499451,yhat:1.0
1/1 [==============================] - 0s 36ms/step
num:603,prediction:0.9786860942840576,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:604,prediction:0.984081506729126,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:605,prediction:0.9841025471687317,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:606,prediction:0.9839768409729004,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:607,prediction:0.983716607093811,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:608,prediction:0.9846153259277344,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:609,prediction:0.9823981523513794,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:610,prediction:0.9833956956863403,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:611,prediction:0.9842368364334106,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:612,prediction:0.9825469851493835,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:613,prediction:0.977163553237915,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:614,prediction:0.9815534949302673,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:615,prediction:0.9818793535232544,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:616,prediction:0.97916579246521,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:617,prediction:0.9802667498588562,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:618,prediction:0.9836086630821228,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:619,prediction:0.9816168546676636,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:620,prediction:0.9813462495803833,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:621,prediction:0.9839752912521362,yhat:1.0
1/1 [==============================] - 0s 37ms/step
num:622,prediction:0.9838149547576904,yhat:1.0
1/1 [==============================] - 0s 38ms/step
num:623,prediction:0.9832510352134705,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:624,prediction:0.9833040833473206,yhat:1.0
1/1 [==============================] - 0s 36ms/step
num:625,prediction:0.9822565913200378,yhat:1.0
1/1 [==============================] - 0s 44ms/step
num:626,prediction:0.9797841906547546,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:627,prediction:0.9780656695365906,yhat:1.0
1/1 [==============================] - 0s 37ms/step
num:628,prediction:0.983120322227478,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:629,prediction:0.9838390350341797,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:630,prediction:0.9835870265960693,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:631,prediction:0.9823600053787231,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:632,prediction:0.9825984835624695,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:633,prediction:0.9834926128387451,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:634,prediction:0.9723891019821167,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:635,prediction:0.9808633923530579,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:636,prediction:0.9832407236099243,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:637,prediction:0.9802092909812927,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:638,prediction:0.9784687757492065,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:639,prediction:0.9845389127731323,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:640,prediction:0.9843249320983887,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:641,prediction:0.984079897403717,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:642,prediction:0.9847657084465027,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:643,prediction:0.9840245842933655,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:644,prediction:0.9843750596046448,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:645,prediction:0.9845390319824219,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:646,prediction:0.9834511280059814,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:647,prediction:0.9816816449165344,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:648,prediction:0.9847142696380615,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:649,prediction:0.9842699766159058,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:650,prediction:0.9840039014816284,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:651,prediction:0.9846662282943726,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:652,prediction:0.983597993850708,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:653,prediction:0.9845865964889526,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:654,prediction:0.9842432141304016,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:655,prediction:0.9842380881309509,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:656,prediction:0.98342365026474,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:657,prediction:0.984315812587738,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:658,prediction:0.9843413233757019,yhat:1.0
1/1 [==============================] - 0s 37ms/step
num:659,prediction:0.9838817119598389,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:660,prediction:0.984579861164093,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:661,prediction:0.983720600605011,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:662,prediction:0.9839707016944885,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:663,prediction:0.9846161007881165,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:664,prediction:0.9844815135002136,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:665,prediction:0.9802858829498291,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:666,prediction:0.9835373759269714,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:667,prediction:0.9825609922409058,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:668,prediction:0.9836007952690125,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:669,prediction:0.9835920333862305,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:670,prediction:0.9837116003036499,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:671,prediction:0.9844687581062317,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:672,prediction:0.9833056330680847,yhat:1.0
1/1 [==============================] - 0s 26ms/step
num:673,prediction:0.9836956262588501,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:674,prediction:0.9844586253166199,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:675,prediction:0.9510918259620667,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:676,prediction:0.981452465057373,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:677,prediction:0.9822540283203125,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:678,prediction:0.9845932126045227,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:679,prediction:0.9835911989212036,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:680,prediction:0.9837209582328796,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:681,prediction:0.9837201833724976,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:682,prediction:0.983758807182312,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:683,prediction:0.9833406805992126,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:684,prediction:0.9833607077598572,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:685,prediction:0.9822022318840027,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:686,prediction:0.9837830662727356,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:687,prediction:0.9818103313446045,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:688,prediction:0.9820727705955505,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:689,prediction:0.9840214252471924,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:690,prediction:0.9838630557060242,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:691,prediction:0.9830493927001953,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:692,prediction:0.9824761152267456,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:693,prediction:0.9822713732719421,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:694,prediction:0.9835524559020996,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:695,prediction:0.9830966591835022,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:696,prediction:0.9839392304420471,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:697,prediction:0.9756459593772888,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:698,prediction:0.9835082292556763,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:699,prediction:0.9838021397590637,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:700,prediction:0.977999210357666,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:701,prediction:0.9836732149124146,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:702,prediction:0.9837920069694519,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:703,prediction:0.9815263152122498,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:704,prediction:0.984174907207489,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:705,prediction:0.983116090297699,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:706,prediction:0.9832038283348083,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:707,prediction:0.9835878610610962,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:708,prediction:0.9847580194473267,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:709,prediction:0.9843273162841797,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:710,prediction:0.9809585809707642,yhat:1.0
1/1 [==============================] - 0s 38ms/step
num:711,prediction:0.9845901131629944,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:712,prediction:0.984157145023346,yhat:1.0
1/1 [==============================] - 0s 39ms/step
num:713,prediction:0.9840049743652344,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:714,prediction:0.9842159152030945,yhat:1.0
1/1 [==============================] - 0s 38ms/step
num:715,prediction:0.9824190735816956,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:716,prediction:0.9836663007736206,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:717,prediction:0.9843116998672485,yhat:1.0
1/1 [==============================] - 0s 40ms/step
num:718,prediction:0.9842620491981506,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:719,prediction:0.9847596287727356,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:720,prediction:0.9840143322944641,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:721,prediction:0.9807166457176208,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:722,prediction:0.9841707944869995,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:723,prediction:0.9847604036331177,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:724,prediction:0.9769408702850342,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:725,prediction:0.9844592809677124,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:726,prediction:0.9844706654548645,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:727,prediction:0.983625054359436,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:728,prediction:0.9831529259681702,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:729,prediction:0.9830402731895447,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:730,prediction:0.9840155243873596,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:731,prediction:0.9829100370407104,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:732,prediction:0.9840003848075867,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:733,prediction:0.9836791753768921,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:734,prediction:0.976167619228363,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:735,prediction:0.9837496876716614,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:736,prediction:0.9840733408927917,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:737,prediction:0.984081506729126,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:738,prediction:0.984000563621521,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:739,prediction:0.9837089776992798,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:740,prediction:0.9845467209815979,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:741,prediction:0.9837996363639832,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:742,prediction:0.9811727404594421,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:743,prediction:0.9842814207077026,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:744,prediction:0.9815106391906738,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:745,prediction:0.984255313873291,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:746,prediction:0.9835951924324036,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:747,prediction:0.9838453531265259,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:748,prediction:0.984143078327179,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:749,prediction:0.9818921685218811,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:750,prediction:0.983977198600769,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:751,prediction:0.9812432527542114,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:752,prediction:0.9833356738090515,yhat:1.0
1/1 [==============================] - 0s 36ms/step
num:753,prediction:0.9802256226539612,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:754,prediction:0.9809389710426331,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:755,prediction:0.9838518500328064,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:756,prediction:0.9839856028556824,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:757,prediction:0.9839085936546326,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:758,prediction:0.9826517105102539,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:759,prediction:0.9793819785118103,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:760,prediction:0.9841768145561218,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:761,prediction:0.9826436638832092,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:762,prediction:0.9843872785568237,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:763,prediction:0.9830878973007202,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:764,prediction:0.9841234683990479,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:765,prediction:0.9737309813499451,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:766,prediction:0.9827390313148499,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:767,prediction:0.9743875861167908,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:768,prediction:0.983517587184906,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:769,prediction:0.9840436577796936,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:770,prediction:0.9830544590950012,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:771,prediction:0.9834984540939331,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:772,prediction:0.980027437210083,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:773,prediction:0.9839370250701904,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:774,prediction:0.9812569618225098,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:775,prediction:0.9842339158058167,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:776,prediction:0.9828106164932251,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:777,prediction:0.9837989211082458,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:778,prediction:0.9831295013427734,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:779,prediction:0.982089638710022,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:780,prediction:0.9833565950393677,yhat:1.0
1/1 [==============================] - 0s 37ms/step
num:781,prediction:0.9842506647109985,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:782,prediction:0.9838085770606995,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:783,prediction:0.9844829440116882,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:784,prediction:0.9830179810523987,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:785,prediction:0.9831269383430481,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:786,prediction:0.9830981492996216,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:787,prediction:0.9827138185501099,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:788,prediction:0.9827014207839966,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:789,prediction:0.984370231628418,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:790,prediction:0.9836825728416443,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:791,prediction:0.9845782518386841,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:792,prediction:0.9823551774024963,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:793,prediction:0.98370361328125,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:794,prediction:0.9840793013572693,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:795,prediction:0.9805248975753784,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:796,prediction:0.9816685914993286,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:797,prediction:0.9841901063919067,yhat:1.0
1/1 [==============================] - 0s 40ms/step
num:798,prediction:0.9833115339279175,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:799,prediction:0.9832851886749268,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:800,prediction:0.984420895576477,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:801,prediction:0.9842472672462463,yhat:1.0
1/1 [==============================] - 0s 37ms/step
num:802,prediction:0.9842821955680847,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:803,prediction:0.9811736345291138,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:804,prediction:0.9839186668395996,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:805,prediction:0.9830285906791687,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:806,prediction:0.984175980091095,yhat:1.0
1/1 [==============================] - 0s 36ms/step
num:807,prediction:0.9846204519271851,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:808,prediction:0.9804818034172058,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:809,prediction:0.9837929606437683,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:810,prediction:0.9830337762832642,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:811,prediction:0.9843354225158691,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:812,prediction:0.9846291542053223,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:813,prediction:0.9812408089637756,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:814,prediction:0.9824784994125366,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:815,prediction:0.9784716963768005,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:816,prediction:0.9841064810752869,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:817,prediction:0.9843909740447998,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:818,prediction:0.9804635047912598,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:819,prediction:0.9816547632217407,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:820,prediction:0.9839576482772827,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:821,prediction:0.9817493557929993,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:822,prediction:0.984411895275116,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:823,prediction:0.9845628142356873,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:824,prediction:0.9847883582115173,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:825,prediction:0.9841291904449463,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:826,prediction:0.9826751351356506,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:827,prediction:0.9842512011528015,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:828,prediction:0.9786746501922607,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:829,prediction:0.9820720553398132,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:830,prediction:0.9838836193084717,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:831,prediction:0.9844691753387451,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:832,prediction:0.9819663763046265,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:833,prediction:0.9834169149398804,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:834,prediction:0.9831390380859375,yhat:1.0
1/1 [==============================] - 0s 37ms/step
num:835,prediction:0.9825153946876526,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:836,prediction:0.9825227856636047,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:837,prediction:0.982075572013855,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:838,prediction:0.9797024130821228,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:839,prediction:0.9845229387283325,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:840,prediction:0.9673020839691162,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:841,prediction:0.9825694561004639,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:842,prediction:0.9831153750419617,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:843,prediction:0.9841717481613159,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:844,prediction:0.9673791527748108,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:845,prediction:0.9847643375396729,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:846,prediction:0.982080340385437,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:847,prediction:0.9836049675941467,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:848,prediction:0.9830988645553589,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:849,prediction:0.9816874861717224,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:850,prediction:0.9833058714866638,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:851,prediction:0.9792376756668091,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:852,prediction:0.9835490584373474,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:853,prediction:0.9838778376579285,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:854,prediction:0.9835085272789001,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:855,prediction:0.984096109867096,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:856,prediction:0.9839929938316345,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:857,prediction:0.9840473532676697,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:858,prediction:0.9803376197814941,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:859,prediction:0.9826626181602478,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:860,prediction:0.9808194637298584,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:861,prediction:0.9812172651290894,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:862,prediction:0.9843899011611938,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:863,prediction:0.9813345074653625,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:864,prediction:0.9837704300880432,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:865,prediction:0.9784442782402039,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:866,prediction:0.9847351312637329,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:867,prediction:0.9844613671302795,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:868,prediction:0.9843888282775879,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:869,prediction:0.9843208193778992,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:870,prediction:0.9846170544624329,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:871,prediction:0.983822762966156,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:872,prediction:0.9830043911933899,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:873,prediction:0.9813268780708313,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:874,prediction:0.9777764081954956,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:875,prediction:0.9843796491622925,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:876,prediction:0.9846878051757812,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:877,prediction:0.9830394983291626,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:878,prediction:0.9836820960044861,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:879,prediction:0.9841126203536987,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:880,prediction:0.9838414788246155,yhat:1.0
1/1 [==============================] - 0s 52ms/step
num:881,prediction:0.9839057922363281,yhat:1.0
1/1 [==============================] - 0s 37ms/step
num:882,prediction:0.9829133749008179,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:883,prediction:0.9831845164299011,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:884,prediction:0.9833648800849915,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:885,prediction:0.9815627932548523,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:886,prediction:0.9842818975448608,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:887,prediction:0.9820698499679565,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:888,prediction:0.9844691753387451,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:889,prediction:0.9839716553688049,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:890,prediction:0.9790106415748596,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:891,prediction:0.9819499254226685,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:892,prediction:0.9822676777839661,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:893,prediction:0.9826457500457764,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:894,prediction:0.9790506958961487,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:895,prediction:0.98409104347229,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:896,prediction:0.9833820462226868,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:897,prediction:0.9837227463722229,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:898,prediction:0.9825640916824341,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:899,prediction:0.9835867285728455,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:900,prediction:0.9844624996185303,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:901,prediction:0.9830777645111084,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:902,prediction:0.9814039468765259,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:903,prediction:0.9823201894760132,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:904,prediction:0.9836803674697876,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:905,prediction:0.9831691980361938,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:906,prediction:0.9846178889274597,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:907,prediction:0.9838135838508606,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:908,prediction:0.9828757643699646,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:909,prediction:0.9838265776634216,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:910,prediction:0.9840736389160156,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:911,prediction:0.9836179614067078,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:912,prediction:0.9834148287773132,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:913,prediction:0.9836966395378113,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:914,prediction:0.9837785363197327,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:915,prediction:0.9841407537460327,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:916,prediction:0.9838101863861084,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:917,prediction:0.9831406474113464,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:918,prediction:0.9837669730186462,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:919,prediction:0.9827414155006409,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:920,prediction:0.9837207198143005,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:921,prediction:0.9829614758491516,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:922,prediction:0.9826223850250244,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:923,prediction:0.9840426445007324,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:924,prediction:0.981883704662323,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:925,prediction:0.9842242002487183,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:926,prediction:0.984001636505127,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:927,prediction:0.9833168983459473,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:928,prediction:0.982904851436615,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:929,prediction:0.9832266569137573,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:930,prediction:0.984367311000824,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:931,prediction:0.9827852249145508,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:932,prediction:0.9803303480148315,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:933,prediction:0.9832963943481445,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:934,prediction:0.9833457469940186,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:935,prediction:0.9825517535209656,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:936,prediction:0.9813349843025208,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:937,prediction:0.9843987226486206,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:938,prediction:0.9843700528144836,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:939,prediction:0.9843148589134216,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:940,prediction:0.9839707612991333,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:941,prediction:0.9826597571372986,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:942,prediction:0.9836907386779785,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:943,prediction:0.9836307764053345,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:944,prediction:0.9837269186973572,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:945,prediction:0.9801669716835022,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:946,prediction:0.9835340976715088,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:947,prediction:0.9823889136314392,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:948,prediction:0.9761135578155518,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:949,prediction:0.9834151268005371,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:950,prediction:0.9821370840072632,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:951,prediction:0.9774661064147949,yhat:1.0
1/1 [==============================] - 0s 34ms/step
num:952,prediction:0.8961255550384521,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:953,prediction:0.9836105108261108,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:954,prediction:0.9840100407600403,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:955,prediction:0.984090268611908,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:956,prediction:0.9834765195846558,yhat:1.0
1/1 [==============================] - 0s 40ms/step
num:957,prediction:0.9835917353630066,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:958,prediction:0.9827850461006165,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:959,prediction:0.9839033484458923,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:960,prediction:0.9843655228614807,yhat:1.0
1/1 [==============================] - 0s 53ms/step
num:961,prediction:0.9840998649597168,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:962,prediction:0.9844564199447632,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:963,prediction:0.9840178489685059,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:964,prediction:0.9792678952217102,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:965,prediction:0.9845614433288574,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:966,prediction:0.9840297102928162,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:967,prediction:0.9829512238502502,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:968,prediction:0.9841799139976501,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:969,prediction:0.9824959635734558,yhat:1.0
1/1 [==============================] - 0s 35ms/step
num:970,prediction:0.9830935001373291,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:971,prediction:0.9839168190956116,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:972,prediction:0.9820416569709778,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:973,prediction:0.9835044145584106,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:974,prediction:0.9830309152603149,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:975,prediction:0.9835460782051086,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:976,prediction:0.9843081831932068,yhat:1.0
1/1 [==============================] - 0s 28ms/step
num:977,prediction:0.9838984608650208,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:978,prediction:0.9838334321975708,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:979,prediction:0.9842277765274048,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:980,prediction:0.9832422733306885,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:981,prediction:0.9837477803230286,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:982,prediction:0.9834564924240112,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:983,prediction:0.9819734692573547,yhat:1.0
1/1 [==============================] - 0s 27ms/step
num:984,prediction:0.9832651019096375,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:985,prediction:0.9831177592277527,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:986,prediction:0.9807765483856201,yhat:1.0
1/1 [==============================] - 0s 32ms/step
num:987,prediction:0.9834715723991394,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:988,prediction:0.9833898544311523,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:989,prediction:0.9832449555397034,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:990,prediction:0.9802360534667969,yhat:1.0
1/1 [==============================] - 0s 33ms/step
num:991,prediction:0.9829782247543335,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:992,prediction:0.9830974340438843,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:993,prediction:0.9842145442962646,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:994,prediction:0.9837626218795776,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:995,prediction:0.9847886562347412,yhat:1.0
1/1 [==============================] - 0s 29ms/step
num:996,prediction:0.9775981903076172,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:997,prediction:0.9844551682472229,yhat:1.0
1/1 [==============================] - 0s 31ms/step
num:998,prediction:0.9847086071968079,yhat:1.0
1/1 [==============================] - 0s 30ms/step
num:999,prediction:0.9842184782028198,yhat:1.0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530
  • 531
  • 532
  • 533
  • 534
  • 535
  • 536
  • 537
  • 538
  • 539
  • 540
  • 541
  • 542
  • 543
  • 544
  • 545
  • 546
  • 547
  • 548
  • 549
  • 550
  • 551
  • 552
  • 553
  • 554
  • 555
  • 556
  • 557
  • 558
  • 559
  • 560
  • 561
  • 562
  • 563
  • 564
  • 565
  • 566
  • 567
  • 568
  • 569
  • 570
  • 571
  • 572
  • 573
  • 574
  • 575
  • 576
  • 577
  • 578
  • 579
  • 580
  • 581
  • 582
  • 583
  • 584
  • 585
  • 586
  • 587
  • 588
  • 589
  • 590
  • 591
  • 592
  • 593
  • 594
  • 595
  • 596
  • 597
  • 598
  • 599
  • 600
  • 601
  • 602
  • 603
  • 604
  • 605
  • 606
  • 607
  • 608
  • 609
  • 610
  • 611
  • 612
  • 613
  • 614
  • 615
  • 616
  • 617
  • 618
  • 619
  • 620
  • 621
  • 622
  • 623
  • 624
  • 625
  • 626
  • 627
  • 628
  • 629
  • 630
  • 631
  • 632
  • 633
  • 634
  • 635
  • 636
  • 637
  • 638
  • 639
  • 640
  • 641
  • 642
  • 643
  • 644
  • 645
  • 646
  • 647
  • 648
  • 649
  • 650
  • 651
  • 652
  • 653
  • 654
  • 655
  • 656
  • 657
  • 658
  • 659
  • 660
  • 661
  • 662
  • 663
  • 664
  • 665
  • 666
  • 667
  • 668
  • 669
  • 670
  • 671
  • 672
  • 673
  • 674
  • 675
  • 676
  • 677
  • 678
  • 679
  • 680
  • 681
  • 682
  • 683
  • 684
  • 685
  • 686
  • 687
  • 688
  • 689
  • 690
  • 691
  • 692
  • 693
  • 694
  • 695
  • 696
  • 697
  • 698
  • 699
  • 700
  • 701
  • 702
  • 703
  • 704
  • 705
  • 706
  • 707
  • 708
  • 709
  • 710
  • 711
  • 712
  • 713
  • 714
  • 715
  • 716
  • 717
  • 718
  • 719
  • 720
  • 721
  • 722
  • 723
  • 724
  • 725
  • 726
  • 727
  • 728
  • 729
  • 730
  • 731
  • 732
  • 733
  • 734
  • 735
  • 736
  • 737
  • 738
  • 739
  • 740
  • 741
  • 742
  • 743
  • 744
  • 745
  • 746
  • 747
  • 748
  • 749
  • 750
  • 751
  • 752
  • 753
  • 754
  • 755
  • 756
  • 757
  • 758
  • 759
  • 760
  • 761
  • 762
  • 763
  • 764
  • 765
  • 766
  • 767
  • 768
  • 769
  • 770
  • 771
  • 772
  • 773
  • 774
  • 775
  • 776
  • 777
  • 778
  • 779
  • 780
  • 781
  • 782
  • 783
  • 784
  • 785
  • 786
  • 787
  • 788
  • 789
  • 790
  • 791
  • 792
  • 793
  • 794
  • 795
  • 796
  • 797
  • 798
  • 799
  • 800
  • 801
  • 802
  • 803
  • 804
  • 805
  • 806
  • 807
  • 808
  • 809
  • 810
  • 811
  • 812
  • 813
  • 814
  • 815
  • 816
  • 817
  • 818
  • 819
  • 820
  • 821
  • 822
  • 823
  • 824
  • 825
  • 826
  • 827
  • 828
  • 829
  • 830
  • 831
  • 832
  • 833
  • 834
  • 835
  • 836
  • 837
  • 838
  • 839
  • 840
  • 841
  • 842
  • 843
  • 844
  • 845
  • 846
  • 847
  • 848
  • 849
  • 850
  • 851
  • 852
  • 853
  • 854
  • 855
  • 856
  • 857
  • 858
  • 859
  • 860
  • 861
  • 862
  • 863
  • 864
  • 865
  • 866
  • 867
  • 868
  • 869
  • 870
  • 871
  • 872
  • 873
  • 874
  • 875
  • 876
  • 877
  • 878
  • 879
  • 880
  • 881
  • 882
  • 883
  • 884
  • 885
  • 886
  • 887
  • 888
  • 889
  • 890
  • 891
  • 892
  • 893
  • 894
  • 895
  • 896
  • 897
  • 898
  • 899
  • 900
  • 901
  • 902
  • 903
  • 904
  • 905
  • 906
  • 907
  • 908
  • 909
  • 910
  • 911
  • 912
  • 913
  • 914
  • 915
  • 916
  • 917
  • 918
  • 919
  • 920
  • 921
  • 922
  • 923
  • 924
  • 925
  • 926
  • 927
  • 928
  • 929
  • 930
  • 931
  • 932
  • 933
  • 934
  • 935
  • 936
  • 937
  • 938
  • 939
  • 940
  • 941
  • 942
  • 943
  • 944
  • 945
  • 946
  • 947
  • 948
  • 949
  • 950
  • 951
  • 952
  • 953
  • 954
  • 955
  • 956
  • 957
  • 958
  • 959
  • 960
  • 961
  • 962
  • 963
  • 964
  • 965
  • 966
  • 967
  • 968
  • 969
  • 970
  • 971
  • 972
  • 973
  • 974
  • 975
  • 976
  • 977
  • 978
  • 979
  • 980
  • 981
  • 982
  • 983
  • 984
  • 985
  • 986
  • 987
  • 988
  • 989
  • 990
  • 991
  • 992
  • 993
  • 994
  • 995
  • 996
  • 997
  • 998
  • 999
  • 1000
  • 1001
  • 1002
  • 1003
  • 1004
  • 1005
  • 1006
  • 1007
  • 1008
  • 1009
  • 1010
  • 1011
  • 1012
  • 1013
  • 1014
  • 1015
  • 1016
  • 1017
  • 1018
  • 1019
  • 1020
  • 1021
  • 1022
  • 1023
  • 1024
  • 1025
  • 1026
  • 1027
  • 1028
  • 1029
  • 1030
  • 1031
  • 1032
  • 1033
  • 1034
  • 1035
  • 1036
  • 1037
  • 1038
  • 1039
  • 1040
  • 1041
  • 1042
  • 1043
  • 1044
  • 1045
  • 1046
  • 1047
  • 1048
  • 1049
  • 1050
  • 1051
  • 1052
  • 1053
  • 1054
  • 1055
  • 1056
  • 1057
  • 1058
  • 1059
  • 1060
  • 1061
  • 1062
  • 1063
  • 1064
  • 1065
  • 1066
  • 1067
  • 1068
  • 1069
  • 1070
  • 1071
  • 1072
  • 1073
  • 1074
  • 1075
  • 1076
  • 1077
  • 1078
  • 1079
  • 1080
  • 1081
  • 1082
  • 1083
  • 1084
  • 1085
  • 1086
  • 1087
  • 1088
  • 1089
  • 1090
  • 1091
  • 1092
  • 1093
  • 1094
  • 1095
  • 1096
  • 1097
  • 1098
  • 1099
  • 1100
  • 1101
  • 1102
  • 1103
  • 1104
  • 1105
  • 1106
  • 1107
  • 1108
  • 1109
  • 1110
  • 1111
  • 1112
  • 1113
  • 1114
  • 1115
  • 1116
  • 1117
  • 1118
  • 1119
  • 1120
  • 1121
  • 1122
  • 1123
  • 1124
  • 1125
  • 1126
  • 1127
  • 1128
  • 1129
  • 1130
  • 1131
  • 1132
  • 1133
  • 1134
  • 1135
  • 1136
  • 1137
  • 1138
  • 1139
  • 1140
  • 1141
  • 1142
  • 1143
  • 1144
  • 1145
  • 1146
  • 1147
  • 1148
  • 1149
  • 1150
  • 1151
  • 1152
  • 1153
  • 1154
  • 1155
  • 1156
  • 1157
  • 1158
  • 1159
  • 1160
  • 1161
  • 1162
  • 1163
  • 1164
  • 1165
  • 1166
  • 1167
  • 1168
  • 1169
  • 1170
  • 1171
  • 1172
  • 1173
  • 1174
  • 1175
  • 1176
  • 1177
  • 1178
  • 1179
  • 1180
  • 1181
  • 1182
  • 1183
  • 1184
  • 1185
  • 1186
  • 1187
  • 1188
  • 1189
  • 1190
  • 1191
  • 1192
  • 1193
  • 1194
  • 1195
  • 1196
  • 1197
  • 1198
  • 1199
  • 1200
  • 1201
  • 1202
  • 1203
  • 1204
  • 1205
  • 1206
  • 1207
  • 1208
  • 1209
  • 1210
  • 1211
  • 1212
  • 1213
  • 1214
  • 1215
  • 1216
  • 1217
  • 1218
  • 1219
  • 1220
  • 1221
  • 1222
  • 1223
  • 1224
  • 1225
  • 1226
  • 1227
  • 1228
  • 1229
  • 1230
  • 1231
  • 1232
  • 1233
  • 1234
  • 1235
  • 1236
  • 1237
  • 1238
  • 1239
  • 1240
  • 1241
  • 1242
  • 1243
  • 1244
  • 1245
  • 1246
  • 1247
  • 1248
  • 1249
  • 1250
  • 1251
  • 1252
  • 1253
  • 1254
  • 1255
  • 1256
  • 1257
  • 1258
  • 1259
  • 1260
  • 1261
  • 1262
  • 1263
  • 1264
  • 1265
  • 1266
  • 1267
  • 1268
  • 1269
  • 1270
  • 1271
  • 1272
  • 1273
  • 1274
  • 1275
  • 1276
  • 1277
  • 1278
  • 1279
  • 1280
  • 1281
  • 1282
  • 1283
  • 1284
  • 1285
  • 1286
  • 1287
  • 1288
  • 1289
  • 1290
  • 1291
  • 1292
  • 1293
  • 1294
  • 1295
  • 1296
  • 1297
  • 1298
  • 1299
  • 1300
  • 1301
  • 1302
  • 1303
  • 1304
  • 1305
  • 1306
  • 1307
  • 1308
  • 1309
  • 1310
  • 1311
  • 1312
  • 1313
  • 1314
  • 1315
  • 1316
  • 1317
  • 1318
  • 1319
  • 1320
  • 1321
  • 1322
  • 1323
  • 1324
  • 1325
  • 1326
  • 1327
  • 1328
  • 1329
  • 1330
  • 1331
  • 1332
  • 1333
  • 1334
  • 1335
  • 1336
  • 1337
  • 1338
  • 1339
  • 1340
  • 1341
  • 1342
  • 1343
  • 1344
  • 1345
  • 1346
  • 1347
  • 1348
  • 1349
  • 1350
  • 1351
  • 1352
  • 1353
  • 1354
  • 1355
  • 1356
  • 1357
  • 1358
  • 1359
  • 1360
  • 1361
  • 1362
  • 1363
  • 1364
  • 1365
  • 1366
  • 1367
  • 1368
  • 1369
  • 1370
  • 1371
  • 1372
  • 1373
  • 1374
  • 1375
  • 1376
  • 1377
  • 1378
  • 1379
  • 1380
  • 1381
  • 1382
  • 1383
  • 1384
  • 1385
  • 1386
  • 1387
  • 1388
  • 1389
  • 1390
  • 1391
  • 1392
  • 1393
  • 1394
  • 1395
  • 1396
  • 1397
  • 1398
  • 1399
  • 1400
  • 1401
  • 1402
  • 1403
  • 1404
  • 1405
  • 1406
  • 1407
  • 1408
  • 1409
  • 1410
  • 1411
  • 1412
  • 1413
  • 1414
  • 1415
  • 1416
  • 1417
  • 1418
  • 1419
  • 1420
  • 1421
  • 1422
  • 1423
  • 1424
  • 1425
  • 1426
  • 1427
  • 1428
  • 1429
  • 1430
  • 1431
  • 1432
  • 1433
  • 1434
  • 1435
  • 1436
  • 1437
  • 1438
  • 1439
  • 1440
  • 1441
  • 1442
  • 1443
  • 1444
  • 1445
  • 1446
  • 1447
  • 1448
  • 1449
  • 1450
  • 1451
  • 1452
  • 1453
  • 1454
  • 1455
  • 1456
  • 1457
  • 1458
  • 1459
  • 1460
  • 1461
  • 1462
  • 1463
  • 1464
  • 1465
  • 1466
  • 1467
  • 1468
  • 1469
  • 1470
  • 1471
  • 1472
  • 1473
  • 1474
  • 1475
  • 1476
  • 1477
  • 1478
  • 1479
  • 1480
  • 1481
  • 1482
  • 1483
  • 1484
  • 1485
  • 1486
  • 1487
  • 1488
  • 1489
  • 1490
  • 1491
  • 1492
  • 1493
  • 1494
  • 1495
  • 1496
  • 1497
  • 1498
  • 1499
  • 1500
  • 1501
  • 1502
  • 1503
  • 1504
  • 1505
  • 1506
  • 1507
  • 1508
  • 1509
  • 1510
  • 1511
  • 1512
  • 1513
  • 1514
  • 1515
  • 1516
  • 1517
  • 1518
  • 1519
  • 1520
  • 1521
  • 1522
  • 1523
  • 1524
  • 1525
  • 1526
  • 1527
  • 1528
  • 1529
  • 1530
  • 1531
  • 1532
  • 1533
  • 1534
  • 1535
  • 1536
  • 1537
  • 1538
  • 1539
  • 1540
  • 1541
  • 1542
  • 1543
  • 1544
  • 1545
  • 1546
  • 1547
  • 1548
  • 1549
  • 1550
  • 1551
  • 1552
  • 1553
  • 1554
  • 1555
  • 1556
  • 1557
  • 1558
  • 1559
  • 1560
  • 1561
  • 1562
  • 1563
  • 1564
  • 1565
  • 1566
  • 1567
  • 1568
  • 1569
  • 1570
  • 1571
  • 1572
  • 1573
  • 1574
  • 1575
  • 1576
  • 1577
  • 1578
  • 1579
  • 1580
  • 1581
  • 1582
  • 1583
  • 1584
  • 1585
  • 1586
  • 1587
  • 1588
  • 1589
  • 1590
  • 1591
  • 1592
  • 1593
  • 1594
  • 1595
  • 1596
  • 1597
  • 1598
  • 1599
  • 1600
  • 1601
  • 1602
  • 1603
  • 1604
  • 1605
  • 1606
  • 1607
  • 1608
  • 1609
  • 1610
  • 1611
  • 1612
  • 1613
  • 1614
  • 1615
  • 1616
  • 1617
  • 1618
  • 1619
  • 1620
  • 1621
  • 1622
  • 1623
  • 1624
  • 1625
  • 1626
  • 1627
  • 1628
  • 1629
  • 1630
  • 1631
  • 1632
  • 1633
  • 1634
  • 1635
  • 1636
  • 1637
  • 1638
  • 1639
  • 1640
  • 1641
  • 1642
  • 1643
  • 1644
  • 1645
  • 1646
  • 1647
  • 1648
  • 1649
  • 1650
  • 1651
  • 1652
  • 1653
  • 1654
  • 1655
  • 1656
  • 1657
  • 1658
  • 1659
  • 1660
  • 1661
  • 1662
  • 1663
  • 1664
  • 1665
  • 1666
  • 1667
  • 1668
  • 1669
  • 1670
  • 1671
  • 1672
  • 1673
  • 1674
  • 1675
  • 1676
  • 1677
  • 1678
  • 1679
  • 1680
  • 1681
  • 1682
  • 1683
  • 1684
  • 1685
  • 1686
  • 1687
  • 1688
  • 1689
  • 1690
  • 1691
  • 1692
  • 1693
  • 1694
  • 1695
  • 1696
  • 1697
  • 1698
  • 1699
  • 1700
  • 1701
  • 1702
  • 1703
  • 1704
  • 1705
  • 1706
  • 1707
  • 1708
  • 1709
  • 1710
  • 1711
  • 1712
  • 1713
  • 1714
  • 1715
  • 1716
  • 1717
  • 1718
  • 1719
  • 1720
  • 1721
  • 1722
  • 1723
  • 1724
  • 1725
  • 1726
  • 1727
  • 1728
  • 1729
  • 1730
  • 1731
  • 1732
  • 1733
  • 1734
  • 1735
  • 1736
  • 1737
  • 1738
  • 1739
  • 1740
  • 1741
  • 1742
  • 1743
  • 1744
  • 1745
  • 1746
  • 1747
  • 1748
  • 1749
  • 1750
  • 1751
  • 1752
  • 1753
  • 1754
  • 1755
  • 1756
  • 1757
  • 1758
  • 1759
  • 1760
  • 1761
  • 1762
  • 1763
  • 1764
  • 1765
  • 1766
  • 1767
  • 1768
  • 1769
  • 1770
  • 1771
  • 1772
  • 1773
  • 1774
  • 1775
  • 1776
  • 1777
  • 1778
  • 1779
  • 1780
  • 1781
  • 1782
  • 1783
  • 1784
  • 1785
  • 1786
  • 1787
  • 1788
  • 1789
  • 1790
  • 1791
  • 1792
  • 1793
  • 1794
  • 1795
  • 1796
  • 1797
  • 1798
  • 1799
  • 1800
  • 1801
  • 1802
  • 1803
  • 1804
  • 1805
  • 1806
  • 1807
  • 1808
  • 1809
  • 1810
  • 1811
  • 1812
  • 1813
  • 1814
  • 1815
  • 1816
  • 1817
  • 1818
  • 1819
  • 1820
  • 1821
  • 1822
  • 1823
  • 1824
  • 1825
  • 1826
  • 1827
  • 1828
  • 1829
  • 1830
  • 1831
  • 1832
  • 1833
  • 1834
  • 1835
  • 1836
  • 1837
  • 1838
  • 1839
  • 1840
  • 1841
  • 1842
  • 1843
  • 1844
  • 1845
  • 1846
  • 1847
  • 1848
  • 1849
  • 1850
  • 1851
  • 1852
  • 1853
  • 1854
  • 1855
  • 1856
  • 1857
  • 1858
  • 1859
  • 1860
  • 1861
  • 1862
  • 1863
  • 1864
  • 1865
  • 1866
  • 1867
  • 1868
  • 1869
  • 1870
  • 1871
  • 1872
  • 1873
  • 1874
  • 1875
  • 1876
  • 1877
  • 1878
  • 1879
  • 1880
  • 1881
  • 1882
  • 1883
  • 1884
  • 1885
  • 1886
  • 1887
  • 1888
  • 1889
  • 1890
  • 1891
  • 1892
  • 1893
  • 1894
  • 1895
  • 1896
  • 1897
  • 1898
  • 1899
  • 1900
  • 1901
  • 1902
  • 1903
  • 1904
  • 1905
  • 1906
  • 1907
  • 1908
  • 1909
  • 1910
  • 1911
  • 1912
  • 1913
  • 1914
  • 1915
  • 1916
  • 1917
  • 1918
  • 1919
  • 1920
  • 1921
  • 1922
  • 1923
  • 1924
  • 1925
  • 1926
  • 1927
  • 1928
  • 1929
  • 1930
  • 1931
  • 1932
  • 1933
  • 1934
  • 1935
  • 1936
  • 1937
  • 1938
  • 1939
  • 1940
  • 1941
  • 1942
  • 1943
  • 1944
  • 1945
  • 1946
  • 1947
  • 1948
  • 1949
  • 1950
  • 1951
  • 1952
  • 1953
  • 1954
  • 1955
  • 1956
  • 1957
  • 1958
  • 1959
  • 1960
  • 1961
  • 1962
  • 1963
  • 1964
  • 1965
  • 1966
  • 1967
  • 1968
  • 1969
  • 1970
  • 1971
  • 1972
  • 1973
  • 1974
  • 1975
  • 1976
  • 1977
  • 1978
  • 1979
  • 1980
  • 1981
  • 1982
  • 1983
  • 1984
  • 1985
  • 1986
  • 1987
  • 1988
  • 1989
  • 1990
  • 1991
  • 1992
  • 1993
  • 1994
  • 1995
  • 1996
  • 1997
  • 1998
  • 1999
  • 2000

与之前做对比

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

m, n = x.shape

fig, axes = plt.subplots(8,8, figsize=(8,8))
fig.tight_layout(pad=0.1,rect=[0, 0.03, 1, 0.92]) #[left, bottom, right, top]

for i,ax in enumerate(axes.flat):
    random_index = np.random.randint(m)
    X_random_reshaped = x[random_index].reshape((20,20)).T
    ax.imshow(X_random_reshaped, cmap='gray')
    ax.set_title(f"{y[random_index,0]},{yhat[random_index].astype(int)}")
    ax.set_axis_off()
fig.suptitle("Label, yhat", fontsize=16)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16


png

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/秋刀鱼在做梦/article/detail/807437
推荐阅读
相关标签
  

闽ICP备14008679号