赞
踩
目录
一、多模态大模型——以VisualGLM实现图文转换(入门级)
4. 存入向量数据库(以FAISS为例,常见向量数据库还有Milvus)
8. RAG流程封装(将提示词Prompt输入给文心大模型,获得输出结果)
依托 aistudio 平台内容,章节一呈现了一个入门级demo(小白友好),以VisualGLM(多模型大模型)为例实现了图生文;章节二呈现了一个进阶版demo(适合有一定LLM基础的人群食用),以文心大模型(LLM+RAG)为例实现了金融知识库问答(参考aistudio上精品项目);章节三推荐了数个综合级、系统化的项目(适合从事/预从事 LLM/AIGC 岗的人群食用),把每个项目深挖吃透后,基本可以从事相关岗。
用git命令从github上下载visualglm-6b模型到本地,git PaddleMIX安装包、pip其它相关依赖包。
- !git clone http://git.aistudio.baidu.com/aistudio/visualglm-6b.git
- !git clone https://github.com/PaddlePaddle/PaddleMIX
- !pip install soundfile librosa
- import os
- os.environ["CUDA_VISIBLE_DEVICES"] = "0"
- os.environ["FLAGS_use_cuda_managed_memory"] = "true"
-
- import requests
- from PIL import Image
- from PaddleMIX.paddlemix import VisualGLMForConditionalGeneration, VisualGLMProcessor
- import warnings
- warnings.filterwarnings('ignore')
-
-
- # 设置visualglm-6b预训练模型的本地路径(PS:本地导入比直接云端下载速度会快很多)
- pretrained_name_or_path = "aistudio/visualglm-6b"
- model = VisualGLMForConditionalGeneration.from_pretrained(pretrained_name_or_path, from_aistudio=True,dtype="float32")
- model.eval()
- processor = VisualGLMProcessor.from_pretrained(pretrained_name_or_path,from_aistudio=True)

- # 图片链接
- # url = "https://paddlenlp.bj.bcebos.com/data/images/mugs.png"
- url = 'https://i02piccdn.sogoucdn.com/5dd40dedd7107cc5'
- image = Image.open(requests.get(url, stream=True).raw)
-
- # 配置模型参数
- generate_kwargs = {
- "max_length": 1024,
- "min_length": 10,
- "num_beams": 1,
- "top_p": 1.0,
- "top_k": 1,
- "repetition_penalty": 1.2,
- "temperature": 0.8,
- "decode_strategy": "sampling",
- "eos_token_id": processor.tokenizer.eos_token_id,
- }

图1
- # Epoch 1
- query = "写诗描述一下这个场景"
- history = []
- inputs = processor(image, query)
-
- generate_ids, _ = model.generate(**inputs, **generate_kwargs)
- responses = processor.get_responses(generate_ids)
- history.append([query, responses[0]])
- print(responses)
图2
- # Epoch 2
- query = "这部电影的导演是谁?"
- inputs = processor(image, query, history=history)
- generate_ids, _ = model.generate(**inputs, **generate_kwargs)
- responses = processor.get_responses(generate_ids)
- history.append([query, responses[0]])
- print(responses)
图3
图4. 整体流程
参考链接:https://aistudio.baidu.com/projectdetail/6682781?channelType=0&channel=0
- # (1)下载PDF文档
- !wget https://zihao-code.obs.cn-east-3.myhuaweicloud.com/20230709-langchain/carbon.pdf -i https://pypi.tuna.tsinghua.edu.cn/simple
- !wget https://zihao-code.obs.cn-east-3.myhuaweicloud.com/20230709-langchain/car.pdf -i https://pypi.tuna.tsinghua.edu.cn/simple
-
- # (2)安装依赖环境
- !pip install transformers langchain openai unstructured tiktoken faiss-cpu sentence_transformers pypdf -i https://pypi.tuna.tsinghua.edu.cn/simple
- from langchain.document_loaders import UnstructuredFileLoader
- from langchain.document_loaders import PyPDFLoader
-
- # 加载所有非结构化文件,提取文本
- loaders = [
- PyPDFLoader('car.pdf'),
- PyPDFLoader('carbon.pdf')
- ]
- # loaders = [
- # UnstructuredFileLoader('思修2018.txt'),
- # UnstructuredFileLoader('近代史2018.txt'),
- # PyPDFLoader('马原2023.pdf'),
- # PyPDFLoader('毛概2023.pdf')
- # ]
-
- # 把每个非结构化文件存入docs列表,并保存了对应出处
- docs = []
- for loader in loaders:
- docs.extend(loader.load())

- from langchain.text_splitter import CharacterTextSplitter
-
- text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=30, separator='\n')
- splits = text_splitter.split_documents(docs)
- print(len(splits))
- from langchain.embedding import HuggingFaceEmbeddings
-
- embedding_model = 'moka-ai/m3e-base'
- embedding = HuggingFaceEmbeddings(model_name=embedding_model)
- from langchain.vectorstores import FAISS
-
- # 提取每个chunk文本块的Embedding向量,构建知识库文本-向量数据库
- vector_store = FAISS.from_documents(splits, embeddings)
- query = '政府发布了哪些双碳政策文件'
-
- # 针对query进行相似性搜索,从知识向量库(FAISS)检索出最相似的TOP K个Chunk
- K = 5
- docs_and_scores = vector_store.similarity_search_with_score(question, k=K)
- print(docs_and_scores)
-
-
- # 打印TOP K Chunk的来源、字数、和query相似度打分
- for i in range(docs_and_scores):
- source = docs_and_scores[i][0].metadata['source']
- content = docs_and_scores[i][0].page_content
- similarity = docs_and_scores[i][1]
- print(f'来源:{source}, 字数:{len(content)}, 相似度打分:{similarity}')
- print(content[:30]+'......')
- print('————————————————————————————————————')

图5
- # 6.1. 生成背景内容(Top K个相似内容拼接)
- context = ''
- for i in docs_and_scores:
- context +=doc[0].page_content
- context +='\n'
- print(context)
-
- # 6.2. 生成提示词
- prompt = f'你是一个学习助手,请根据下面的已知信息回答问题,你只需要回答和已知信息相关的问题,如果问题和已知信息不相关,你可以直接回答"不知道" 问题:{query} 已知信息:{context}'
图6
- import requests
-
- class BaiduErnie:
- host: str = "https://aip.baidubce.com"
- client_id: str = ""
- client_secret: str = ""
- access_token: str = ""
-
- def __init__(self, client_id: str, client_secret: str):
- self.client_id = client_id
- self.client_secret = client_secret
- self.get_access_token()
-
- def get_access_token(self) -> str:
- url = f"{self.host}/oauth/2.0/token?grant_type=client_credentials&client_id={self.client_id}&client_secret={self.client_secret}"
- response = requests.get(url)
- if response.status_code == 200:
- self.access_token = response.json()["access_token"]
- return self.access_token
- else:
- raise Exception("获取access_token失败")
-
- def chat(self, messages: list, user_id: str) -> tuple:
- if not self.access_token:
- self.get_access_token()
- url = f"{self.host}/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant?access_token={self.access_token}"
- data = {"messages": messages, "user_id": user_id}
- response = requests.post(url, json=data)
- if response.status_code == 200:
- resp = response.json()
- return resp["result"], resp
- else:
- raise Exception("请求失败")
-
-
- # 填入文心大模型后台的API信息
- # 获取地址: https://console.bce.baidu.com/ai/?_=1711963019980#/ai/intelligentwriting/overview/index
- client_id = "" # 自己的client_id
- client_secret = "" # 自己的client_secret
- user_id = "" # 自己的user_id
- baidu_ernie = BaiduErnie(client_id, client_secret)
-
- def chat(prompt):
- messages = []
- messages.append({"role": "user", "content": prompt})
- result, response = baidu_ernie.chat(messages, user_id)
- return result
- result = chat('你是哪家公司开发的什么大语言模型?')
- print(result)
- # result:我是百度公司开发的知识增强语言模型,能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。

- def predict(query):
- docs_and_scores = vector_store.similarity_search_with_score(query, k=K)
-
- context = ''
- for doc in docs_and_scores:
- context +=doc[0].page_content
- context +='\n'
-
- prompt = '你是一个学习助手,请根据下面的已知信息回答问题,你只需要回答和已知信息相关的问题,如果问题和已知信息不相关,你可以直接回答"不知道" 问题:{} 已知信息:{}'.format(query, context)
- # 输入文心大模型
- result = chat(prompt)
- print(result)
-
- predict('政府发布了哪些双碳政策文件')
- # 根据政府发布的信息,中国提出了30·60“双碳”目标,并发布了《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》和《2030年前碳达峰行动方案》等纲领性文件,以保障目标的实现。中国作为全球第二大经济体,始终高度关注气候变化对国家和社会的影响。
(1)多模态大模型(慎入,因为封闭式学习时长需要2周左右):https://aistudio.baidu.com/education/group/info/29948
(3)医学人工智能与大模型:https://aistudio.baidu.com/education/group/info/30524
(4)数字人定制(定制声音、造型,生成数字人,用于语音识别 & 聊天 & 翻译):https://aistudio.baidu.com/projectdetail/6998882?channelType=0&channel=0
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。