当前位置:   article > 正文

Python中的Pandas详解-6-处理Nan的思路

Python中的Pandas详解-6-处理Nan的思路

处理Nan的思路

正如之前提到的,在能够使用大型数据集训练学习算法之前,我们通常需要先清理数据。也就是说,我们需要通过某个方法检测并更正数据中的错误。虽然任何给定数据集可能会出现各种糟糕的数据,例如离群值或不正确的值,但是我们几乎始终会遇到的糟糕数据类型是缺少值。正如之前看到的,Pandas 会为缺少的值分配 NaN 值。在这,我们将学习如何检测和处理 NaN 值。 首先,我们将创建一个具有一些 NaN 值的 DataFrame。

# We create a list of Python dictionaries
items2 = [{'bikes': 20, 'pants': 30, 'watches': 35, 'shirts': 15, 'shoes':8, 'suits':45},
{'watches': 10, 'glasses': 50, 'bikes': 15, 'pants':5, 'shirts': 2, 'shoes':5, 'suits':7},
{'bikes': 20, 'pants': 30, 'watches': 35, 'glasses': 4, 'shoes':10}]

# We create a DataFrame  and provide the row index
store_items = pd.DataFrame(items2, index = ['store 1', 'store 2', 'store 3'])

# We display the DataFrame
store_items

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在这里插入图片描述

可以清晰地看出,我们创建的 DataFrame 具有 3 个 NaN 值:商店 1 中有一个,商店 3 中有两个。但是,如果我们向 DataFrame 中加载非常庞大的数据集,可能有数百万条数据,那么就不太容易直观地发现 NaN 值的数量。对于这些情形,我们结合使用多种方法来计算数据中的 NaN 值的数量。以下示例同时使用了 .isnull()sum() 方法来计算我们的 DataFrame 中的 NaN 值的数量。

# We count the number of NaN values in store_items
x =  store_items.isnull().sum().sum()

# We print x
print('Number of NaN values in our DataFrame:', x)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
umber of NaN values in our DataFrame: 3

  • 1
  • 2

在上述示例中,.isnull() 方法返回一个大小和 store_items 一样的布尔型 DataFrame,并用 True 表示具有 NaN 值的元素,用 False

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/秋刀鱼在做梦/article/detail/931829
推荐阅读
相关标签
  

闽ICP备14008679号