赞
踩
特征匹配是一种图像处理技术,用于在不同图像之间寻找相似的特征点,并将它们进行匹配。特征匹配在计算机视觉和图像处理领域中具有广泛的应用,包括目标识别、图像拼接、三维重建等。
暴力匹配是一种简单直接的匹配方法,它遍历所有特征点的描述符,并计算它们之间的距离。然后根据距离进行排序,选择距离最短的特征点作为匹配点。虽然暴力匹配方法简单,但在特征点数量较大时计算开销较大。暴力匹配的具体步骤如下:
特征点检测:首先,使用特征检测算法(如SIFT、SURF、ORB等)在图像中检测出关键点。这些关键点通常位于图像中的显著位置,如角点、边缘等。
特征描述:对于每个检测到的关键点,计算其周围像素的特征描述符。这些描述符是一组向量,用于描述关键点周围的图像信息。常见的特征描述算法包括SIFT描述符、SURF描述符、ORB描述符等。
特征匹配:将一组特征点的描述符与另一组特征点的描述符进行匹配。常见的方法是计算描述符之间的距离(如欧氏距离、汉明距离等),并选择距离最近的特征点作为匹配点。
匹配筛选:对匹配结果进行筛选和排序,通常根据距离进行排序,选择距离最短的特征点作为最佳匹配点。可以使用阈值或其他筛选方法来排除不可靠的匹配。
匹配验证和优化:对匹配结果进行验证和优化,例如使用RANSAC算法进行模型拟合和外点剔除,以提高匹配的准确性和鲁棒性。
首先来看一下完整代码如下:
- import cv2
-
- img1 = cv2.imread('test.jpg')
- img2=cv2.imread('test1.jpg')
-
- # 初始化ORB特征点检测器
- orb = cv2.ORB_create()
-
- # 检测特征点与描述符
- kp1, des1 = orb.detectAndCompute(img1,None)
- kp2, des2 = orb.detectAndCompute(img2,None)
-
- # 创建蛮力(BF)匹配器
- bf = cv2.BFMatcher_create(cv2.NORM_HAMMING, crossCheck=True)
-
- # 匹配描述符
- matches = bf.match(des1,des2)
-
- # 画出10个匹配的描述符
- img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches[:10], None, flags=2)
-
- cv2.imshow("show",img3)
- cv2.waitKey()
- cv2.destroyAllWindows()
首先需要注意的是,opencv提供了ORB特征点检测器,所以在使用opencv进行特征匹配时,我们通常使用ORB特征检测算法。在进行特征匹配之前要先进行ORB特征点检测器初始化,初始化的代码为:orb = cv2.ORB_create()
接下来是其他函数介绍:
(一)检测特征点与描述符函数
keypoints, descriptors = orb.detectAndCompute(src,mask)
其中的两个参数为:
(1)“src” , 输入图像,可以是灰度图像或彩色图像。
(2)“mask”, 掩膜图像,用于指定感兴趣区域。只有在掩膜图像中对应位置为非零值时,才会进行特征检测和描述符计算。
函数返回两个值:
(1)“keypoints”, 检测到的关键点列表,每个关键点包含其在图像中的坐标和其他属性。
(2)“descriptors”, 关键点的描述符矩阵,每一行对应一个关键点的描述符。
(二)创建 BFMatcher 对象
cv2.BFMatcher_create(normType, crossCheck)
其中两个参数分别为:
(1)“normType”, 可选参数,指定距离度量的类型。默认值为 cv2.NORM_L2
,表示使用欧氏距离。还可以选择 cv2.NORM_L1
、cv2.NORM_HAMMING
或 cv2.NORM_HAMMING2
等其他距离度量类型
(2)“crossCheck”, 可选参数,指定是否进行交叉验证。默认值为 False
,表示不进行交叉验证。如果设置为 True
,则只有当两个特征点的最佳匹配互为最近邻时,才认为匹配成功
函数返回一个 Brute-Force Matcher 对象,可以用于进行特征匹配
(三)匹配描述符
bf.match(queryDescriptors,trainDescriptors)
其中的两个参数分别为:
(1)“queryDescriptors”, 是需要匹配的图像特征向量
(2)“trainDescriptors”, 是被匹配的图像特征向量
(四)画出匹配结果
cv2.drawMatches(src1,kp1,src2,kp2,match,matchesMask,flags)
(1)“src1”, 第一幅图像,通常是查询图像或原始图像
(2)“kp1”, 第一幅图像的关键点列表
(3)“src2”, 第二幅图像,通常是训练图像或匹配图像
(4)“kp2”, 第二幅图像的关键点列表
(5)“match”, 匹配结果列表,包含匹配的特征点对
(6)“matchesMask”, 是决定需要绘制哪些图像,为空则全部绘制
(7)“flags”, 是指定绘图的标志位,0 为全部绘制,2 为绘制 match 匹配 中的,4 为不同的绘制样式
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。