当前位置:   article > 正文

BERT代码实现及解读

bert segment embedding代码

注意力机制系列可以参考前面的一文:

注意力机制及其理解

Transformer Block

BERT中的点积注意力模型

公式:

代码:

  1. class Attention(nn.Module):
  2. """
  3. Scaled Dot Product Attention
  4. """
  5. def forward(self, query, key, value, mask=None, dropout=None):
  6. scores = torch.matmul(query, key.transpose(-2, -1)) \
  7. / math.sqrt(query.size(-1))
  8. if mask is not None:
  9. scores = scores.masked_fill(mask == 0, -1e9)
  10. # softmax得到概率得分p_atten,
  11. p_attn = F.softmax(scores, dim=-1)
  12. # 如果有 dropout 就随机 dropout 比例参数
  13. if dropout is not None:
  14. p_attn = dropout(p_attn)
  15. return torch.matmul(p_attn, value), p_attn

在 self attention的计算过程中, 通常使用min batch来计算, 也就是一次计算多个句子,多句话得长度并不一致,因此,我们需要按照最大得长度对短句子进行补全,也就是padding零,但这样做得话,softmax计算就会被影响,$e^0=1$也就是有值,这样就会影响结果,这并不是我们希望看到得,因此在计算得时候我们需要把他们mask起来,填充一个负无穷(-1e9这样得数值),这样计算就可以为0了,等于把计算遮挡住。

多头自注意力模型

公式:

Attention Mask

代码:

  1. class MultiHeadedAttention(nn.Module):
  2. """
  3. Take in model size and number of heads.
  4. """
  5. def __init__(self, h, d_model, dropout=0.1):
  6. # h 表示模型个数
  7. super().__init__()
  8. assert d_model % h == 0
  9. # d_k 表示 key长度,d_model表示模型输出维度,需保证为h得正数倍
  10. self.d_k = d_model // h
  11. self.h = h
  12. self.linear_layers = nn.ModuleList([nn.Linear(d_model, d_model) for _ in range(3)])
  13. self.output_linear = nn.Linear(d_model, d_model)
  14. self.attention = Attention()
  15. self.dropout = nn.Dropout(p=dropout)
  16. def forward(self, query, key, value, mask=None):
  17. batch_size = query.size(0)
  18. # 1) Do all the linear projections in batch from d_model => h x d_k
  19. query, key, value = [l(x).view(batch_size, -1, self.h, self.d_k).transpose(1, 2)
  20. for l, x in zip(self.linear_layers, (query, key, value))]
  21. # 2) Apply attention on all the projected vectors in batch.
  22. x, attn = self.attention(query, key, value, mask=mask, dropout=self.dropout)
  23. # 3) "Concat" using a view and apply a final linear.
  24. x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.h * self.d_k)
  25. return self.output_linear(x)

Position-wise FFN

Position-wise FFN 是一个双层得神经网络,在论文中采用ReLU做激活层:

公式:

注:在 google github中的BERT的代码实现中用Gaussian Error Linear Unit代替了RelU作为激活函数

代码:

  1. class PositionwiseFeedForward(nn.Module):
  2. def __init__(self, d_model, d_ff, dropout=0.1):
  3. super(PositionwiseFeedForward, self).__init__()
  4. self.w_1 = nn.Linear(d_model, d_ff)
  5. self.w_2 = nn.Linear(d_ff, d_model)
  6. self.dropout = nn.Dropout(dropout)
  7. self.activation = GELU()
  8. def forward(self, x):
  9. return self.w_2(self.dropout(self.activation(self.w_1(x))))
  10. class GELU(nn.Module):
  11. """
  12. Gaussian Error Linear Unit.
  13. This is a smoother version of the RELU.
  14. Original paper: https://arxiv.org/abs/1606.08415
  15. """
  16. def forward(self, x):
  17. return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))

Layer Normalization

LayerNorm实际就是对隐含层做层归一化,即对某一层的所有神经元的输入进行归一化(沿着通道channel方向),使得其加快训练速度:

Normalization

层归一化公式:

$l$表示第L层,H 是指每层的隐藏单元数(hidden unit),$\mu$表示平均值,$\sigma$表示方差, $\alpha$表示表征向量,$w$表示矩阵权重。

代码:

  1. class LayerNorm(nn.Module):
  2. "Construct a layernorm module (See citation for details)."
  3. def __init__(self, features, eps=1e-6):
  4. super(LayerNorm, self).__init__()
  5. self.a_2 = nn.Parameter(torch.ones(features))
  6. self.b_2 = nn.Parameter(torch.zeros(features))
  7. self.eps = eps
  8. def forward(self, x):
  9. # mean(-1) 表示 mean(len(x)), 这里的-1就是最后一个维度,也就是最里面一层的维度
  10. mean = x.mean(-1, keepdim=True)
  11. std = x.std(-1, keepdim=True)
  12. return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

残差连接

残差连接就是图中Add+Norm层。每经过一个模块的运算, 都要把运算之前的值和运算之后的值相加, 从而得到残差连接,残差可以使梯度直接走捷径反传到最初始层。

残差连接公式:

X 表示输入的变量,实际就是跨层相加。

代码:

  1. class SublayerConnection(nn.Module):
  2. """
  3. A residual connection followed by a layer norm.
  4. Note for code simplicity the norm is first as opposed to last.
  5. """
  6. def __init__(self, size, dropout):
  7. super(SublayerConnection, self).__init__()
  8. self.norm = LayerNorm(size)
  9. self.dropout = nn.Dropout(dropout)
  10. def forward(self, x, sublayer):
  11. "Apply residual connection to any sublayer with the same size."
  12. # Add and Norm
  13. return x + self.dropout(sublayer(self.norm(x)))

Transform Block

Transform Block

代码:

  1. class TransformerBlock(nn.Module):
  2. """
  3. Bidirectional Encoder = Transformer (self-attention)
  4. Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
  5. """
  6. def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):
  7. """
  8. :param hidden: hidden size of transformer
  9. :param attn_heads: head sizes of multi-head attention
  10. :param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size
  11. :param dropout: dropout rate
  12. """
  13. super().__init__()
  14. # 多头注意力模型
  15. self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden)
  16. # PFFN
  17. self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)
  18. # 输入层
  19. self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout)
  20. # 输出层
  21. self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout)
  22. self.dropout = nn.Dropout(p=dropout)
  23. def forward(self, x, mask):
  24. x = self.input_sublayer(x, lambda _x: self.attention.forward(_x, _x, _x, mask=mask))
  25. x = self.output_sublayer(x, self.feed_forward)
  26. return self.dropout(x)

Embedding嵌入层

Embedding采用三种相加的形式表示:

embeddings

代码:

  1. class BERTEmbedding(nn.Module):
  2. """
  3. BERT Embedding which is consisted with under features
  4. 1. TokenEmbedding : normal embedding matrix
  5. 2. PositionalEmbedding : adding positional information using sin, cos
  6. 3. SegmentEmbedding : adding sentence segment info, (sent_A:1, sent_B:2)
  7. sum of all these features are output of BERTEmbedding
  8. """
  9. def __init__(self, vocab_size, embed_size, dropout=0.1):
  10. """
  11. :param vocab_size: total vocab size
  12. :param embed_size: embedding size of token embedding
  13. :param dropout: dropout rate
  14. """
  15. super().__init__()
  16. self.token = TokenEmbedding(vocab_size=vocab_size, embed_size=embed_size)
  17. self.position = PositionalEmbedding(d_model=self.token.embedding_dim)
  18. self.segment = SegmentEmbedding(embed_size=self.token.embedding_dim)
  19. self.dropout = nn.Dropout(p=dropout)
  20. self.embed_size = embed_size
  21. def forward(self, sequence, segment_label):
  22. x = self.token(sequence) + self.position(sequence) + self.segment(segment_label)
  23. return self.dropout(x)
位置编码(Positional Embedding)

位置嵌入的维度为 [??? ???????? ?????ℎ, ????????? ?????????] , 嵌入的维度同词向量的维度, ??? ???????? ?????ℎ 属于超参数, 指的是限定的最大单个句长.

公式:

其所绘制的图形: Positional Encoding

代码:

  1. class PositionalEmbedding(nn.Module):
  2. def __init__(self, d_model, max_len=512):
  3. super().__init__()
  4. # Compute the positional encodings once in log space.
  5. pe = torch.zeros(max_len, d_model).float()
  6. pe.require_grad = False
  7. position = torch.arange(0, max_len).float().unsqueeze(1)
  8. div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
  9. pe[:, 0::2] = torch.sin(position * div_term)
  10. pe[:, 1::2] = torch.cos(position * div_term)
  11. # 对数据维度进行扩充,扩展第0
  12. pe = pe.unsqueeze(0)
  13. # 添加一个持久缓冲区pe,缓冲区可以使用给定的名称作为属性访问
  14. self.register_buffer('pe', pe)
  15. def forward(self, x):
  16. return self.pe[:, :x.size(1)]
Segment Embedding

主要用来做额外句子或段落划分新够词, 这里加入了三个维度,分别是句子 开头【CLS】,下一句【STEP】,遮盖词【MASK】 例如: [CLS] the man went to the store [SEP] he bought a gallon of milk [SEP]

代码:

  1. class SegmentEmbedding(nn.Embedding):
  2. def __init__(self, embed_size=512):
  3. # 3个新词
  4. super().__init__(3, embed_size, padding_idx=0)
Token Embedding

代码:

  1. class TokenEmbedding(nn.Embedding):
  2. def __init__(self, vocab_size, embed_size=512):
  3. super().__init__(vocab_size, embed_size, padding_idx=0)

BERT

  1. class BERT(nn.Module):
  2. """
  3. BERT model : Bidirectional Encoder Representations from Transformers.
  4. """
  5. def __init__(self, vocab_size, hidden=768, n_layers=12, attn_heads=12, dropout=0.1):
  6. """
  7. :param vocab_size: 所有字的长度
  8. :param hidden: BERT模型隐藏层大小
  9. :param n_layers: Transformer blocks(layers)数量
  10. :param attn_heads: 多头注意力head数量
  11. :param dropout: dropout rate
  12. """
  13. super().__init__()
  14. self.hidden = hidden
  15. self.n_layers = n_layers
  16. self.attn_heads = attn_heads
  17. # paper noted they used 4*hidden_size for ff_network_hidden_size
  18. self.feed_forward_hidden = hidden * 4
  19. # 嵌入层, positional + segment + token
  20. self.embedding = BERTEmbedding(vocab_size=vocab_size, embed_size=hidden)
  21. # 多层transformer blocks
  22. self.transformer_blocks = nn.ModuleList(
  23. [TransformerBlock(hidden, attn_heads, hidden * 4, dropout) for _ in range(n_layers)])
  24. def forward(self, x, segment_info):
  25. # attention masking for padded token
  26. # torch.ByteTensor([batch_size, 1, seq_len, seq_len)
  27. mask = (x > 0).unsqueeze(1).repeat(1, x.size(1), 1).unsqueeze(1)
  28. # embedding the indexed sequence to sequence of vectors
  29. x = self.embedding(x, segment_info)
  30. # 多个transformer 堆叠
  31. for transformer in self.transformer_blocks:
  32. x = transformer.forward(x, mask)
  33. return x

语言模型训练的几点技巧

BERT如何做到自训练的,一下是几个小tip,让其做到自监督训练:

Mask

随机遮盖或替换一句话里面任意字或词, 然后让模型通过上下文的理解预测那一个被遮盖或替换的部分, 之后做????的时候只计算被遮盖部分的????

随机把一句话中 15% 的 ????? 替换成以下内容:

    1. 这些 ????? 有 80% 的几率被替换成 【????】 ;
    1. 有 10% 的几率被替换成任意一个其他的 ????? ;
    1. 有 10% 的几率原封不动.

让模型预测和还原被遮盖掉或替换掉的部分,损失函数只计算随机遮盖或替换部分的Loss。

代码:

  1. class MaskedLanguageModel(nn.Module):
  2. """
  3. predicting origin token from masked input sequence
  4. n-class classification problem, n-class = vocab_size
  5. """
  6. def __init__(self, hidden, vocab_size):
  7. """
  8. :param hidden: output size of BERT model
  9. :param vocab_size: total vocab size
  10. """
  11. super().__init__()
  12. self.linear = nn.Linear(hidden, vocab_size)
  13. self.softmax = nn.LogSoftmax(dim=-1)
  14. def forward(self, x):
  15. return self.softmax(self.linear(x))

预测下一句

代码:

  1. class NextSentencePrediction(nn.Module):
  2. """
  3. 2-class classification model : is_next, is_not_next
  4. """
  5. def __init__(self, hidden):
  6. """
  7. :param hidden: BERT model output size
  8. """
  9. super().__init__()
  10. self.linear = nn.Linear(hidden, 2)
  11. # 这里采用了logsoftmax代替了softmax,
  12. # 当softmax值远离真实值的时候梯度也很小,logsoftmax的梯度会更好些
  13. self.softmax = nn.LogSoftmax(dim=-1)
  14. def forward(self, x):
  15. return self.softmax(self.linear(x[:, 0]))

损失函数

负对数最大似然损失(negative log likelihood),也叫交叉熵(Cross-Entropy)公式:

代码:

  1. # 在Pytorch中 CrossEntropyLoss()等于NLLLoss+ softmax,因此如果用CrossEntropyLoss最后一层就不用softmax了
  2. criterion = nn.NLLLoss(ignore_index=0)
  3. # 2-1. NLL(negative log likelihood) loss of is_next classification result
  4. next_loss = criterion(next_sent_output, data["is_next"])
  5. # 2-2. NLLLoss of predicting masked token word
  6. mask_loss = criterion(mask_lm_output.transpose(1, 2), data["bert_label"])
  7. # 2-3. Adding next_loss and mask_loss : 3.4 Pre-training Procedure
  8. loss = next_loss + mask_loss

语言模型训练

代码:

  1. class BERTLM(nn.Module):
  2. """
  3. BERT Language Model
  4. Next Sentence Prediction Model + Masked Language Model
  5. """
  6. def __init__(self, bert: BERT, vocab_size):
  7. """
  8. :param bert: BERT model which should be trained
  9. :param vocab_size: total vocab size for masked_lm
  10. """
  11. super().__init__()
  12. self.bert = bert
  13. self.next_sentence = NextSentencePrediction(self.bert.hidden)
  14. self.mask_lm = MaskedLanguageModel(self.bert.hidden, vocab_size)
  15. def forward(self, x, segment_label):
  16. x = self.bert(x, segment_label)
  17. return self.next_sentence(x), self.mask_lm(x)

博客链接:https://www.shikanon.com/2019/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/BERT%E4%BB%A3%E7%A0%81%E5%AE%9E%E7%8E%B0%E5%8F%8A%E8%A7%A3%E8%AF%BB/

转载于:https://my.oschina.net/Kanonpy/blog/3082061

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/空白诗007/article/detail/851205
推荐阅读
相关标签
  

闽ICP备14008679号