当前位置:   article > 正文

图神经网络初探(一)_图生成网络ggn

图生成网络ggn

由于数学功底不算强,故不从数学推导出发去学习GNN,主要学习GNN的结构,效果和用法。

之前的DL:针对欧式空间数据,对于图数据效果不好,故使用图神经网络直接处理图数据。

图嵌入

首先需要图嵌入,即高维图转变为低维向量表示,主要参考这篇文章https://zhuanlan.zhihu.com/p/62629465。

图嵌入的主要问题:属性选择,可扩展性,嵌入维数。

拉普拉斯矩阵

拉普拉斯矩阵是学习图神经网络绕不开的概念。首先复习一下相似矩阵,有可逆P,使得P^-1AP=B,则A和B是相似矩阵。在一组基(单位向量ij,任意x=ai+bj)下的变换x->y,使用一个矩阵A表示,A是该函数的线性变换。而对于另一组基下的相同变换,使用矩阵B表示,则A,B就是相似矩阵。P通过两组基的关系求出。
简单学习一下拉普拉斯矩阵。定义:拉普拉斯矩阵对应一个图,定义为L=D-A,D为图的度矩阵,A为邻接矩阵。正则化拉普拉斯矩阵Lsym=D(-1/2)LD(-1/2)。拉普拉斯矩阵和数理分析中拉普拉斯算子作用类似,拉普拉斯算子是用于求标量函数梯度场的散度,对于单变量函数就是求二阶导数。在图像处理中,其可以突出灰度值变化的位置从而锐化图像。
而为神马D-A这样一个东西在图问题中和拉普拉斯算子作用一样呢?首先图问题中对应的函数是节点v对于实数R的映射。参考https://zhuanlan.zhihu.com/p/67336297/中的社交网络为例,该图问题的函数就表示每个节点发消息的强度。那么在一条边上的梯度即用两节点函数值

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/空白诗007/article/detail/857033
推荐阅读
相关标签
  

闽ICP备14008679号