赞
踩
如下参考链接1的作者大大实现了UR5机械臂的正运动学和逆运动学的Matlab代码。但逆解部分在不同版本的Matlab中运行有错误。
本篇文章是MatlabR2016a下完成的,并说明一下原代码错误的原因。
目录
参考链接:六轴UR机械臂正逆运动学求解_MATLAB代码(标准DH参数表)
参考链接2的作者实现了UR5机械臂的正运动学和逆运动学的理论推导,给出了求解公式;
参考链接1的作者在参考链接2的基础上,写出了Matlab代码,但作者给出的代码只能在特定的Matlab中运行,如2017b。
- function T = zhengyundongxue(theta)
- %已知关节角求变换矩阵
- a=[0,-0.42500,-0.39225,0,0,0];
- d=[0.089159,0,0,0.10915,0.09465,0.08230];
- alpha=[pi/2,0,0,pi/2,-pi/2,0];
-
-
- T01=T_para(theta(1),d(1),a(1),alpha(1));
- T12=T_para(theta(2),d(2),a(2),alpha(2));
- T23=T_para(theta(3),d(3),a(3),alpha(3));
- T34=T_para(theta(4),d(4),a(4),alpha(4));
- T45=T_para(theta(5),d(5),a(5),alpha(5));
- T56=T_para(theta(6),d(6),a(6),alpha(6));
-
- T=T01*T12*T23*T34*T45*T56;
-
- end
-
- function T = T_para(theta,d,a,alpha)
- T=[ccc(theta),-sss(theta)*ccc(alpha),sss(theta)*sss(alpha),a*ccc(theta);
- sss(theta),ccc(theta)*ccc(alpha),-ccc(theta)*sss(alpha),a*sss(theta);
- 0,sss(alpha),ccc(alpha),d;
- 0,0,0,1];
- end
-
- function sss=sss(a)
- % sss=sin(a/180*pi);
- sss=sin(a);
- end
-
- function ccc=ccc(a)
- % ccc=cos(a/180*pi);
- ccc=cos(a);
- end
- function theta=niyundongxue(T)
- %变换矩阵T已知
- %SDH:标准DH参数表求逆解(解析解)
- %部分DH参数表如下,需要求解theta信息
-
- a=[0,-0.42500,-0.39225,0,0,0];
- d=[0.089159,0,0,0.10915,0.09465,0.08230];
-
- alpha=[pi/2,0,0,pi/2,-pi/2,0];% alpha没有用到,故此逆解程序只适合alpha=[pi/2,0,0,pi/2,-pi/2,0]的情况!
-
- nx=T(1,1);ny=T(2,1);nz=T(3,1);
- ox=T(1,2);oy=T(2,2);oz=T(3,2);
- ax=T(1,3);ay=T(2,3);az=T(3,3);
- px=T(1,4);py=T(2,4);pz=T(3,4);
-
- %求解关节角1
- m=d(6)*ay-py; n=ax*d(6)-px;
- theta1(1,1)=atan2(m,n)-atan2(d(4),sqrt(m^2+n^2-(d(4))^2));
- theta1(1,2)=atan2(m,n)-atan2(d(4),-sqrt(m^2+n^2-(d(4))^2));
-
- %求解关节角5
- theta5(1,1:2)=acos(ax*sin(theta1)-ay*cos(theta1));
- theta5(2,1:2)=-acos(ax*sin(theta1)-ay*cos(theta1));
-
- %求解关节角6
- mm=nx*sin(theta1)-ny*cos(theta1); nn=ox*sin(theta1)-oy*cos(theta1);
- %theta6=atan2(mm,nn)-atan2(sin(theta5),0);
- theta6(1,1:2)=atan2(mm,nn)-atan2(sin(theta5(1,1:2)),0);
- theta6(2,1:2)=atan2(mm,nn)-atan2(sin(theta5(2,1:2)),0);
-
- %求解关节角3
- mmm(1,1:2)=d(5)*(sin(theta6(1,1:2)).*(nx*cos(theta1)+ny*sin(theta1))+cos(theta6(1,1:2)).*(ox*cos(theta1)+oy*sin(theta1))) ...
- -d(6)*(ax*cos(theta1)+ay*sin(theta1))+px*cos(theta1)+py*sin(theta1);
- nnn(1,1:2)=pz-d(1)-az*d(6)+d(5)*(oz*cos(theta6(1,1:2))+nz*sin(theta6(1,1:2)));
- mmm(2,1:2)=d(5)*(sin(theta6(2,1:2)).*(nx*cos(theta1)+ny*sin(theta1))+cos(theta6(2,1:2)).*(ox*cos(theta1)+oy*sin(theta1))) ...
- -d(6)*(ax*cos(theta1)+ay*sin(theta1))+px*cos(theta1)+py*sin(theta1);
- nnn(2,1:2)=pz-d(1)-az*d(6)+d(5)*(oz*cos(theta6(2,1:2))+nz*sin(theta6(2,1:2)));
- theta3(1:2,:)=acos((mmm.^2+nnn.^2-(a(2))^2-(a(3))^2)/(2*a(2)*a(3)));
- theta3(3:4,:)=-acos((mmm.^2+nnn.^2-(a(2))^2-(a(3))^2)/(2*a(2)*a(3)));
-
- %求解关节角2
- mmm_s2(1:2,:)=mmm;
- mmm_s2(3:4,:)=mmm;
- nnn_s2(1:2,:)=nnn;
- nnn_s2(3:4,:)=nnn;
- s2=((a(3)*cos(theta3)+a(2)).*nnn_s2-a(3)*sin(theta3).*mmm_s2)./ ...
- ((a(2))^2+(a(3))^2+2*a(2)*a(3)*cos(theta3));
- c2=(mmm_s2+a(3)*sin(theta3).*s2)./(a(3)*cos(theta3)+a(2));
- theta2=atan2(s2,c2);
-
- %整理关节角1 5 6 3 2
- theta(1:4,1)=theta1(1,1);theta(5:8,1)=theta1(1,2);
- theta(:,2)=[theta2(1,1),theta2(3,1),theta2(2,1),theta2(4,1),theta2(1,2),theta2(3,2),theta2(2,2),theta2(4,2)]';
- theta(:,3)=[theta3(1,1),theta3(3,1),theta3(2,1),theta3(4,1),theta3(1,2),theta3(3,2),theta3(2,2),theta3(4,2)]';
- theta(1:2,5)=theta5(1,1);theta(3:4,5)=theta5(2,1);
- theta(5:6,5)=theta5(1,2);theta(7:8,5)=theta5(2,2);
- theta(1:2,6)=theta6(1,1);theta(3:4,6)=theta6(2,1);
- theta(5:6,6)=theta6(1,2);theta(7:8,6)=theta6(2,2);
-
- %求解关节角4
- theta(:,4)=atan2(-sin(theta(:,6)).*(nx*cos(theta(:,1))+ny*sin(theta(:,1)))-cos(theta(:,6)).* ...
- (ox*cos(theta(:,1))+oy*sin(theta(:,1))),oz*cos(theta(:,6))+nz*sin(theta(:,6)))-theta(:,2)-theta(:,3);
-
- end
- clc;clear
-
- %% 初始化关节角度
- %theta=[1,1/2,1/3,1,1,1];%没有什么含义,随便取的
- theta=[1,1/2,1,1,1,1];%没有什么含义,随便取的
- %theta=[1,1,1,1,1,1];%没有什么含义,随便取的
-
- %% 求运动学正解
- TT=zhengyundongxue(theta)
-
- %% 求运动学逆解
- niyundongxue(TT)
按照求解过程,在求解到不同关节角时,得到的解的个数如下:
同样的,
改了这两个地方就好啦。这样,大家勉强能入门了,但如果能知其所以然,推导到其他标准DH系参数,就更好了!!!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。